Spaces:
Build error
Build error
File size: 29,443 Bytes
c13b805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
# ~~~~~~~~~~~~~~~~~~~~~~~~ #
# ~~~ Import libraries ~~~ #
# ~~~~~~~~~~~~~~~~~~~~~~~~ #
# Google Scraper Class #
from google_patent_scraper import scraper_class
# Context Manager #
from contextlib import contextmanager
# Writing/Reading
import csv
import numpy as np
import pandas as pd
# clean patent #
import re
# Multiprocessing #
import multiprocessing as mp
# parse xml to text
from bs4 import BeautifulSoup as bs
# zip folder to download
import shutil
import base64
import streamlit as st
import os
# extract problems
from App.bin import constants
from App.bin.InputHandler import InputHandler
from App.bin.PatentHandler import PatentHandler
from App.bin.CorpusProcessor import CorpusProcessor
import json
from pandas import json_normalize
import glob
# ~~~~~~~~~~~~~~~~~~~ #
# ~~~~ Functions ~~~~ #
# ~~~~~~~~~~~~~~~~~~~ #
def single_process_scraper(patent,path_to_data_file,data_column_order):
"""Scrapes a single google patent using the google scraper class
Function does not return any values, instead it writes the output
of the data_patent_details into a csv file specified in the path_to_data_file
parameter
Inputs:
patent (str) : patent number including country prefix
lock (obj) : to prevent collisions, function uses a lock. You can pass whichever
lock you want to this parameter
path_to_data_file : absolute path to csv file to write data_patent_details to
data_column_order : name of columns in order they will be saved in csv file
"""
# ~ Initialize scraper class ~ #
scraper=scraper_class()
# ~ Scrape single patent ~ #
err, soup, url = scraper.request_single_patent(patent)
# Checks if the scrape is successful.
# If successful -> parse text and deposit into csv file
# Else -> print error statement
if err=='Success':
patent_parsed = scraper.get_scraped_data(soup,url,patent)
# Save the parsed data_patent_details to a csv file
# using multiprocessing lock function
# to prevent collisions
with lock:
with open(path_to_data_file,'a',newline='') as ofile:
writer = csv.DictWriter(ofile, fieldnames=data_column_order)
writer.writerow(patent_parsed)
else:
print('Patent {0} has error code {1}'.format(patent,err))
# Allow pool to accept keyword arguments
@contextmanager
def poolcontext(*args, **kwargs):
pool = mp.Pool(*args, **kwargs)
yield pool
pool.terminate()
def init(l):
"""Creates lock object that is global, for use in sharing
across processes
"""
global lock
lock = l
def patentinput(patent_string):
"""
remove space among patent numbers from users' inputs
"""
patent_string = patent_string.replace(" ", "") #remove space that user tpyed
list_results = list(patent_string.split(","))
return list_results
def clean_patent(table):
"""clean raw patent details from website
"""
list_inventor_name = np.array([]) # create an empty list
inventor_name = table['inventor_name']
for line in inventor_name:
new_line = re.sub(r'"inventor_name":', '', line)
new_line = re.sub(r'\{|\}|\[|\]|\"', '', new_line)
# print(new_line)
list_inventor_name = np.append(list_inventor_name, new_line)
new_table_inventor_name = pd.DataFrame(list_inventor_name, columns=['inventor_name'])
# new_table.to_csv('saved_data/cleaned_patent_details')
##clean assignee_name_orig feature
list_assignee_name = np.array([])
assignee_name = table['assignee_name_orig']
for line in assignee_name:
new_line = re.sub(r'"assignee_name":', '', line) ##### errors
new_line = re.sub(r'\{|\}|\[|\]|\"', '', new_line)
list_assignee_name = np.append(list_assignee_name, new_line)
new_table_assignee_name = pd.DataFrame(list_assignee_name, columns=['assignee_name_orig'])
# print(new_table_assignee_name)
#
##clean assignee_name_current feature
list_assignee_name_current = np.array([])
assignee_name_current = table['assignee_name_current']
for line in assignee_name_current:
new_line = re.sub(r'("assignee_name":)|(\\n\s\s)|(\{|\}|\[|\]|\")', '', line)
list_assignee_name_current = np.append(list_assignee_name_current, new_line)
new_table_assignee_name_current = pd.DataFrame(list_assignee_name_current, columns=['assignee_name_current'])
# print(new_table_assignee_name_current)
#
##clean forward_cite_no_family feature
list_forward_cite_no_family = np.array([])
forward_cite_no_family = table['forward_cite_no_family']
for line in forward_cite_no_family:
new_line = re.sub(
r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
new_line = re.sub(r'\s\,\s', '', new_line)
list_forward_cite_no_family = np.append(list_forward_cite_no_family, new_line)
new_table_forward_cite_no_family = pd.DataFrame(list_forward_cite_no_family, columns=['forward_cite_no_family'])
# print(new_table_forward_cite_no_family)
#
##clean forward_cite_yes_family feature
list_forward_cite_yes_family = np.array([])
forward_cite_yes_family = table['forward_cite_yes_family']
for line in forward_cite_yes_family:
new_line = re.sub(
r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
new_line = re.sub(r'\s\,\s', '', new_line)
list_forward_cite_yes_family = np.append(list_forward_cite_yes_family, new_line)
new_table_forward_cite_yes_family = pd.DataFrame(list_forward_cite_yes_family, columns=['forward_cite_yes_family'])
# print(new_table_forward_cite_yes_family)
##clean backward_cite_no_family feature
list_backward_cite_no_family = np.array([])
backward_cite_no_family = table['backward_cite_no_family']
for line in backward_cite_no_family:
new_line = re.sub(
r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
new_line = re.sub(r'\s\,\s', '', new_line)
list_backward_cite_no_family = np.append(list_backward_cite_no_family, new_line)
new_table_backward_cite_no_family = pd.DataFrame(list_backward_cite_no_family, columns=['backward_cite_no_family'])
# print(new_table_backward_cite_no_family)
##clean backward_cite_yes_family feature
list_backward_cite_yes_family = np.array([])
backward_cite_yes_family = table['backward_cite_yes_family']
for line in backward_cite_yes_family:
new_line = re.sub(
r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
new_line = re.sub(r'\s\,\s', '', new_line)
list_backward_cite_yes_family = np.append(list_backward_cite_yes_family, new_line)
new_table_backward_cite_yes_family = pd.DataFrame(list_backward_cite_yes_family,
columns=['backward_cite_yes_family'])
# print(new_table_backward_cite_yes_family)
##rename url feature
list_patent_number = np.array([])
patent_number = table['url']
for line in patent_number:
list_patent_number = np.append(list_patent_number, line)
new_table_patent_number = pd.DataFrame(list_patent_number, columns=['patent_number'])
# print(new_table_patent_number)
##rename patent feature
list_patent_link = np.array([])
patent_link = table['patent']
for line in patent_link:
list_patent_link = np.append(list_patent_link, line)
new_table_patent_link = pd.DataFrame(list_patent_link, columns=['patent_link'])
# print(new_table_patent_link)
##rename abstract_text
list_abstract_text = np.array([])
abstract_text = table['abstract_text']
for line in abstract_text:
list_abstract_text = np.append(list_abstract_text, line)
new_table_abstract_text = pd.DataFrame(abstract_text, columns=['abstract_text'])
# print(new_table_patent_link)
###################################
## concatenate all of sub dataframes to the final results
results = pd.concat([new_table_patent_number, table[['pub_date', 'priority_date', 'grant_date', 'filing_date']],
new_table_inventor_name, new_table_assignee_name, new_table_assignee_name_current,
new_table_forward_cite_no_family, new_table_forward_cite_yes_family,
new_table_backward_cite_yes_family, new_table_backward_cite_no_family, new_table_patent_link,
new_table_abstract_text], axis=1)
return results
def count_patent(patent_table):
"""count the patent features"""
##count the number of assignee_name feature
assignee_name = pd.DataFrame(patent_table['assignee_name_orig'])
count_assignee_name = assignee_name.applymap(lambda x: str.count(x, ',') + 1)
count_assignee_name = count_assignee_name.rename(columns={'assignee_name_orig': 'count_assignee_name'})
# print(count_assignee_name)
##count the number of inventor_name feature
inventor_name = pd.DataFrame(patent_table['inventor_name'])
count_inventor_name = inventor_name.applymap(lambda x: str.count(x, ',') + 1)
count_inventor_name = count_inventor_name.rename(columns={'inventor_name': 'count_inventor_name'})
# print(count_inventor_name)
##count the number of assignee_name_current feature
assignee_name_current = pd.DataFrame(patent_table['assignee_name_current'])
# print(assignee_name_current)
##replace NaN as int(0)
assignee_name_current_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',') + 1
count_assignee_name_current = assignee_name_current.applymap(assignee_name_current_replace_NaN)
count_assignee_name_current = count_assignee_name_current.rename(
columns={'assignee_name_current': 'count_assignee_name_current'})
# print(count_assignee_name_current)
##count forward_cite_no_family
forward_cite_no_family = pd.DataFrame(patent_table['forward_cite_no_family'])
forward_cite_no_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
count_forward_cite_no_family = forward_cite_no_family.applymap(forward_cite_no_family_replace_NaN)
count_forward_cite_no_family = count_forward_cite_no_family.rename(
columns={'forward_cite_no_family': 'count_forward_cite_no_family'})
# print(count_forward_cite_no_family)
##count forward_cite_yes_family
forward_cite_yes_family = pd.DataFrame(patent_table['forward_cite_yes_family'])
forward_cite_yes_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
count_forward_cite_yes_family = forward_cite_yes_family.applymap(forward_cite_yes_family_replace_NaN)
count_forward_cite_yes_family = count_forward_cite_yes_family.rename(
columns={'forward_cite_yes_family': 'count_forward_cite_yes_family'})
# print(count_forward_cite_yes_family)
##count backward_cite_no_family
backward_cite_no_family = pd.DataFrame(patent_table['backward_cite_no_family'])
backward_cite_no_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
count_backward_cite_no_family = backward_cite_no_family.applymap(backward_cite_no_family_replace_NaN)
count_backward_cite_no_family = count_backward_cite_no_family.rename(
columns={'backward_cite_no_family': 'count_backward_cite_no_family'})
# print(count_backward_cite_no_family)
##count backward_cite_yes_family
backward_cite_yes_family = pd.DataFrame(patent_table['backward_cite_yes_family'])
backward_cite_yes_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
count_backward_cite_yes_family = backward_cite_yes_family.applymap(backward_cite_yes_family_replace_NaN)
count_backward_cite_yes_family = count_backward_cite_yes_family.rename(
columns={'backward_cite_yes_family': 'count_backward_cite_yes_family'})
# print(count_backward_cite_yes_family)
##concate dataframes to the final cleaned dataset
results = pd.concat([patent_table[['patent_number', 'pub_date', 'priority_date',
'grant_date', 'filing_date', 'inventor_name']], count_inventor_name,
patent_table[['assignee_name_orig']], count_assignee_name,
patent_table[['assignee_name_current']], count_assignee_name_current,
patent_table[['forward_cite_no_family']], count_forward_cite_no_family,
patent_table[['forward_cite_yes_family']], count_forward_cite_yes_family,
patent_table[['backward_cite_no_family']], count_backward_cite_no_family,
patent_table[['backward_cite_yes_family']], count_backward_cite_yes_family,
patent_table[['patent_link', 'abstract_text']]], axis=1)
return results
def XMLtoTEXT(patent_xml, saved_file_path):
# read file
tree = bs(patent_xml, "html.parser")
# get title
print('Title:')
title = tree.find_all("invention-title")
patent_title = title[0].text
print(patent_title)
# get number
print("Patent number:")
patent_number = tree.find_all('doc-number')
patent_number = 'US' + patent_number[0].text
patent_number_new = re.sub(r'US0', 'US', patent_number)
print(patent_number_new)
# get domain
print('Domain:')
domain = tree.find_all('classification-level')
patent_domain = domain[0].text
print(patent_domain)
# get date of publication
print("Publication date:")
date = tree.find_all("date")
patent_pubdate = date[0].text
print(patent_pubdate)
# get abstract
print('Abstract:')
ab = tree.find_all("abstract")
patent_abstract = ab[0].text
print(patent_abstract)
# get claim
print('Claims:')
claims = tree.find_all("claim-text")
for claim in claims:
print(claim.text)
# get description
print('Description:')
description = tree.find_all('description')
for des in description:
print(des.text)
# save file to the place
with open(saved_file_path + patent_number_new + '.txt', 'w') as text_file:
text_file.write("Patent title" + '\n' + patent_title +
'\n' * 2 + "Patent number" + '\n' +
patent_number_new + '\n' * 2 + "Domain" + '\n' + patent_domain + '\n' * 2 + "Publication date" + '\n' + patent_pubdate
+ '\n' * 2 + "Abstract" + '\n' + patent_abstract
+ '\n' * 2 + 'Claims' + '\n') # save patent title, number, domain, publication data_patent_details, abstract
for claim in claims:
text_file.write(claim.text + '\n')
text_file.write('\n' + 'Description' + '\n')
for des in description:
text_file.write('\n' + des.text + '\n')
return text_file
# to download patents (.txt) by zip file
def create_download_zip(zip_directory, zip_path, filename):
"""
zip_directory (str): path to directory you want to zip
zip_path (str): where you want to save zip file
filename (str): download filename for user who download this
"""
shutil.make_archive(zip_path+filename, 'zip', zip_directory)
with open(zip_path+filename+'.zip', 'rb') as f:
st.download_button(
label = 'Download',
data = f,
file_name='patent.zip',
mime= 'zip'
)
# save input files (txt) into the folder
def save_uploadedfile(uploadedfile):
with open(os.path.join('Data/input/US_patents/',uploadedfile.name ), 'wb') as f:
f.write(uploadedfile.getbuffer())
# return st.success('Saved File:{}'.format(uploadedfile.name))
# to extract problems from patents
def extractor (folder):
input_folder = constants.DATA_INPUT + folder
files_extension = "*." + 'txt'
iInput = InputHandler(input_folder, files_extension)
input_data = iInput.get_input()
pretreat_data = PatentHandler(input_data)
clean_patent_data = pretreat_data.pretreat_data()
process_data = CorpusProcessor(clean_patent_data, input_folder, files_extension)
processed_data = process_data.process_corpus()
# convert json to dataframe
with open('Data/graphs/US_patents/graph.json') as json_data:
data = json.load(json_data)
concept_df = json_normalize(data['problem_graph'], sep="_")
concept_df = concept_df[['concept_sentence', 'concept_source', 'concept_type']]
problem_df = concept_df.rename(columns={"concept_sentence": "problem", 'concept_source': 'patent_number',
'concept_type': 'type'})
# choose problems
problem_new = problem_df.loc[problem_df['type'] == 'problem']
print(problem_new)
new_table_test = problem_new['patent_number'].apply(
lambda x: re.search(r'(?<=US_patents\/).*?(?=.txt)', x).group())
# assign patent number to the corresponding feature
problem_results = problem_new.assign(patent_number=new_table_test)
print(problem_results[['problem', 'patent_number']])
problem_results = problem_results[['patent_number', 'problem']]
problem_results.to_csv('data_problem/problem.csv',
index=False)
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
def extract_info_text():
new = pd.DataFrame(columns=['title', 'patent_number', 'domain', 'publication_date'])
# use glob to get all the txt files in the folder
path = 'Data/input/US_patents'
txt_files = glob.glob(os.path.join(path, "*.txt"))
for f in txt_files:
df = pd.read_csv(f, sep='\n', header=None, names=['content'])
print(df)
# extract patent information from text
new = new.append({'patent_number': df.iloc[3, 0], 'title': df.iloc[1, 0],
'domain': df.iloc[5, 0], 'publication_date': df.iloc[7, 0]}, ignore_index=True)
print(new)
problem = pd.read_csv('data_problem/problem.csv')
final = pd.merge(problem, new, on='patent_number', how='left')
return final
def input_domain(user_input_domain):
if user_input_domain == 'A (Human necessities)':
domain = 'A'
elif user_input_domain == 'B (Performing operations; transporting)':
domain = 'B'
elif user_input_domain == 'C (Chemistry; metallurgy)':
domain = 'C'
elif user_input_domain == 'D (Textiles; paper)':
domain = 'D'
elif user_input_domain == 'E (Fixed constructions)':
domain = 'E'
elif user_input_domain == 'F (Mechanical engineering; lighting; heating; weapons; blasting engines or pumps':
domain = 'F'
elif user_input_domain == 'G (Physics)':
domain = 'G'
elif user_input_domain == 'H (Electricity)':
domain = 'H'
return domain
# the function for choosing month period that user choosed
def choosing_month_period(problem_corpus,start_year, end_year, start_month, end_month):
problem_corpus = problem_corpus[problem_corpus['publication_year'].between(start_year, end_year)]
if start_year != end_year: # 2014- 2015 #2014- 2016
if start_month == end_month: # /01/ /01/
if end_year == start_year + 1: # 2014/03/01 - 2015/03/01 #2014/01/01 - 2015/01/23 #2014/12/01 - 2015/12/23
problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (
problem_corpus['publication_month'].between(start_month, 12)), 'label'] = 'true'
problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (
problem_corpus['publication_month'].between(1, end_month)), 'label'] = 'true'
elif end_year > start_year + 1: # 2014/01/01 - 2016/01/23 #2014/12/01 - 2016/12/23 # 2014/03/01 - 2016/03/01
if start_month == 1: # 2014/01/01 - 2016/01/23
problem_corpus.loc[(
problem_corpus['publication_year'] == end_year) & (
problem_corpus['publication_month'].between(
end_month + 1, 12)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
elif start_month == 12: # 2014/12/01 - 2016/12/23
problem_corpus.loc[(
problem_corpus['publication_year'] == start_year) & (
problem_corpus['publication_month'].between(
1, start_month - 1)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
else: # 2014/03/01 - 2016/03/01
problem_corpus.loc[(
problem_corpus['publication_year'] == start_year) & (
problem_corpus['publication_month'].between(
1, start_month - 1)), 'label'] = 'false'
problem_corpus.loc[(
problem_corpus['publication_year'] == end_year) & (
problem_corpus['publication_month'].between(
end_month + 1, 12)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
if start_month > end_month: # /03/ /01/
if end_year == start_year + 1: # 2014/12/01 - 2015/03/01 #2014/02/01 - 2015/01/23
problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (
problem_corpus['publication_month'].between(start_month, 12)), 'label'] = 'true'
problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (
problem_corpus['publication_month'].between(1, end_month)), 'label'] = 'true'
elif end_year > start_year + 1: # 2014/12/01 - 2016/03/01 #2014/02/01 - 2016/01/23
problem_corpus.loc[(
problem_corpus['publication_year'] == start_year) & (
problem_corpus['publication_month'].between(
1, start_month - 1)), 'label'] = 'false'
problem_corpus.loc[(
problem_corpus['publication_year'] == end_year) & (
problem_corpus['publication_month'].between(
end_month + 1, 12)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
if start_month < end_month: # /01/ /03/
if end_year == start_year + 1: # 2014/01/01 - 2015/12/01 #2014/02/01 - 2015/11/23
problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (
problem_corpus['publication_month'].between(start_month, 12)), 'label'] = 'true'
problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (
problem_corpus['publication_month'].between(1, end_month)), 'label'] = 'true'
elif end_year > start_year + 1: # 2014/01/01 - 2016/12/01 #2014/02/01 - 2016/11/23
if start_month == 1 & end_month == 12: # 2014/01/01 - 2016/12/01
problem_corpus['label'] = 'true'
elif start_month == 1: # 2014/01/01 - 2016/03/01 #2014/01/01 - 2016/11/01
problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (problem_corpus[
'publication_month'].between(
end_month + 1, 12)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
elif end_month == 12: # 2014/02/01 - 2016/12/01 #2015/02/01 - 2016/12/01
problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (problem_corpus[
'publication_month'].between(
1, start_month - 1)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
else: # 2014/02/01 - 2016/11/23
problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (problem_corpus[
'publication_month'].between(
1, start_month - 1)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (problem_corpus[
'publication_month'].between(
end_month + 1, 12)), 'label'] = 'false'
problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
else: # start_year == end_year: 2012-2012
problem_corpus = problem_corpus[problem_corpus['publication_year'] == start_year]
if start_month != end_month: # 2014/03/01 - 2014/05/01 2014/01/01 - 2014/05/01 2014/03/01 - 2014/12/01
problem_corpus.loc[problem_corpus['publication_month'].between(start_month, end_month), 'label'] = 'true'
else: # 2014/03/01 - 2014/03/20 #2014/01/01 - 2014/01/20
problem_corpus.loc[problem_corpus['publication_month'] == start_month, 'label'] = 'true'
problem_corpus = problem_corpus.loc[problem_corpus['label'] == 'true']
problem_corpus= problem_corpus[['patent_number', 'Domain', 'First part Contradiction',
'Second part Contradiction', 'publication_date', 'publication_year',
'publication_month', 'label']]
return problem_corpus
# for IDM-Similar model (word2vec)
def avg_feature_vector(sentence, model, num_features, index2word_set):
words = sentence.split()
feature_vec = np.zeros((num_features, ), dtype='float32')
n_words = 0
for word in words:
if word in index2word_set:
n_words += 1
feature_vec = np.add(feature_vec, model[word])
if (n_words > 0):
feature_vec = np.divide(feature_vec, n_words)
return feature_vec
def creat_query_id(dataset):
# create query
question = []
for each in dataset['problem']:
new = "What is the solution for the problem that " + each + "?"
question.append(new)
dataset['question'] = question
# create id
data = dataset.rename(columns={'Unnamed: 0': 'id'})
return data
def csv_to_json (csv_file,json_file):
results = []
with open(csv_file) as csv_file:
csvReader = csv.DictReader(csv_file)
for row in csvReader:
context = row['Context']
qas = []
content = {}
content['id'] = row['id']
content['question'] = row['question']
qas.append(content)
result = {}
result['context'] = context
result['qas'] = qas
results.append(result)
# write data to a json file
with open(json_file, 'w') as jsonFile:
jsonFile.write(json.dumps(results, indent=4))
def QA_prediction(prediction_file, prediction_output, model):
# if __name__ == '__main__':
with open(prediction_file, 'r') as pre_file:
temp = json.loads(pre_file.read())
predictions = model.predict(temp)
with open(prediction_output, 'w') as json_file:
json_file.write(json.dumps(predictions, indent=4))
print(predictions)
def json_to_csv(input_file, output_file):
result = pd.read_json(input_file)
print(result.head())
result_answer = result.iloc[0][:]
print(result_answer.head())
print(len(result_answer))
df = pd.DataFrame(index=np.arange(len(result_answer)), columns=['id', 'answer'])
print(df)
for i in range(len(result_answer)):
line = result_answer[i]
print(line)
df.iloc[i, 0] = line['id']
df.iloc[i, 1] = line['answer']
print(df.head())
df.to_csv(output_file, index=False)
|