File size: 29,443 Bytes
c13b805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

# ~~~~~~~~~~~~~~~~~~~~~~~~ #
# ~~~ Import libraries ~~~ #
# ~~~~~~~~~~~~~~~~~~~~~~~~ #

# Google Scraper Class #
from google_patent_scraper import scraper_class

# Context Manager #
from contextlib import contextmanager

# Writing/Reading
import csv
import numpy as np
import pandas as pd

# clean patent #
import re

# Multiprocessing #
import multiprocessing as mp

# parse xml to text
from bs4 import BeautifulSoup as bs

# zip folder to download
import shutil
import base64
import streamlit as st
import os

# extract problems
from App.bin import constants
from App.bin.InputHandler import InputHandler
from App.bin.PatentHandler import PatentHandler
from App.bin.CorpusProcessor import CorpusProcessor
import json
from pandas import json_normalize
import glob



# ~~~~~~~~~~~~~~~~~~~ #
# ~~~~ Functions ~~~~ #
# ~~~~~~~~~~~~~~~~~~~ #

def single_process_scraper(patent,path_to_data_file,data_column_order):
    """Scrapes a single google patent using the google scraper class

       

       Function does not return any values, instead it writes the output

         of the data_patent_details into a csv file specified in the path_to_data_file

         parameter



       Inputs:

         patent (str) : patent number including country prefix

         lock (obj) : to prevent collisions, function uses a lock. You can pass whichever

                      lock you want to this parameter

         path_to_data_file : absolute path to csv file to write data_patent_details to

         data_column_order : name of columns in order they will be saved in csv file



    """
    # ~ Initialize scraper class ~ #
    scraper=scraper_class() 

    # ~ Scrape single patent ~ #
    err, soup, url = scraper.request_single_patent(patent)

    # Checks if the scrape is successful.
    # If successful -> parse text and deposit into csv file
    # Else          -> print error statement

    if err=='Success':
        patent_parsed = scraper.get_scraped_data(soup,url,patent)

        # Save the parsed data_patent_details to a csv file
        #  using multiprocessing lock function
        #  to prevent collisions
        with lock:
            with open(path_to_data_file,'a',newline='') as ofile:
                writer = csv.DictWriter(ofile, fieldnames=data_column_order)
                writer.writerow(patent_parsed)
    else:
        print('Patent {0} has error code {1}'.format(patent,err))

# Allow pool to accept keyword arguments
@contextmanager
def poolcontext(*args, **kwargs):
    pool = mp.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

def init(l):
    """Creates lock object that is global, for use in sharing 

       across processes

    """
    global lock
    lock = l


def patentinput(patent_string):
    """

    remove space among patent numbers from users' inputs

    """
    patent_string = patent_string.replace(" ", "") #remove space that user tpyed
    list_results = list(patent_string.split(","))
    return list_results

def clean_patent(table):
    """clean raw patent details from website

    """

    list_inventor_name = np.array([]) # create an empty list

    inventor_name = table['inventor_name']
    for line in inventor_name:
        new_line = re.sub(r'"inventor_name":', '', line)
        new_line = re.sub(r'\{|\}|\[|\]|\"', '', new_line)
        # print(new_line)
        list_inventor_name = np.append(list_inventor_name, new_line)

    new_table_inventor_name = pd.DataFrame(list_inventor_name, columns=['inventor_name'])
    # new_table.to_csv('saved_data/cleaned_patent_details')

    ##clean assignee_name_orig feature
    list_assignee_name = np.array([])
    assignee_name = table['assignee_name_orig']
    for line in assignee_name:
        new_line = re.sub(r'"assignee_name":', '', line)  ##### errors
        new_line = re.sub(r'\{|\}|\[|\]|\"', '', new_line)
        list_assignee_name = np.append(list_assignee_name, new_line)

    new_table_assignee_name = pd.DataFrame(list_assignee_name, columns=['assignee_name_orig'])
    # print(new_table_assignee_name)
    #
    ##clean assignee_name_current feature
    list_assignee_name_current = np.array([])
    assignee_name_current = table['assignee_name_current']
    for line in assignee_name_current:
        new_line = re.sub(r'("assignee_name":)|(\\n\s\s)|(\{|\}|\[|\]|\")', '', line)
        list_assignee_name_current = np.append(list_assignee_name_current, new_line)

    new_table_assignee_name_current = pd.DataFrame(list_assignee_name_current, columns=['assignee_name_current'])
    # print(new_table_assignee_name_current)
    #
    ##clean forward_cite_no_family feature
    list_forward_cite_no_family = np.array([])
    forward_cite_no_family = table['forward_cite_no_family']
    for line in forward_cite_no_family:
        new_line = re.sub(
            r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
        new_line = re.sub(r'\s\,\s', '', new_line)
        list_forward_cite_no_family = np.append(list_forward_cite_no_family, new_line)

    new_table_forward_cite_no_family = pd.DataFrame(list_forward_cite_no_family, columns=['forward_cite_no_family'])
    # print(new_table_forward_cite_no_family)
    #
    ##clean forward_cite_yes_family feature
    list_forward_cite_yes_family = np.array([])
    forward_cite_yes_family = table['forward_cite_yes_family']
    for line in forward_cite_yes_family:
        new_line = re.sub(
            r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
        new_line = re.sub(r'\s\,\s', '', new_line)
        list_forward_cite_yes_family = np.append(list_forward_cite_yes_family, new_line)

    new_table_forward_cite_yes_family = pd.DataFrame(list_forward_cite_yes_family, columns=['forward_cite_yes_family'])
    # print(new_table_forward_cite_yes_family)

    ##clean backward_cite_no_family feature
    list_backward_cite_no_family = np.array([])
    backward_cite_no_family = table['backward_cite_no_family']
    for line in backward_cite_no_family:
        new_line = re.sub(
            r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
        new_line = re.sub(r'\s\,\s', '', new_line)
        list_backward_cite_no_family = np.append(list_backward_cite_no_family, new_line)

    new_table_backward_cite_no_family = pd.DataFrame(list_backward_cite_no_family, columns=['backward_cite_no_family'])
    # print(new_table_backward_cite_no_family)

    ##clean backward_cite_yes_family feature
    list_backward_cite_yes_family = np.array([])
    backward_cite_yes_family = table['backward_cite_yes_family']
    for line in backward_cite_yes_family:
        new_line = re.sub(
            r'("patent_number":)|(\\n)|(\{|\}|\[|\]|\")|(priority_date)|(:)|(pub_date)|(\d{4}-\d{2}-\d{2})', '', line)
        new_line = re.sub(r'\s\,\s', '', new_line)
        list_backward_cite_yes_family = np.append(list_backward_cite_yes_family, new_line)

    new_table_backward_cite_yes_family = pd.DataFrame(list_backward_cite_yes_family,
                                                      columns=['backward_cite_yes_family'])
    # print(new_table_backward_cite_yes_family)

    ##rename url feature
    list_patent_number = np.array([])
    patent_number = table['url']
    for line in patent_number:
        list_patent_number = np.append(list_patent_number, line)

    new_table_patent_number = pd.DataFrame(list_patent_number, columns=['patent_number'])
    # print(new_table_patent_number)

    ##rename patent feature
    list_patent_link = np.array([])
    patent_link = table['patent']
    for line in patent_link:
        list_patent_link = np.append(list_patent_link, line)

    new_table_patent_link = pd.DataFrame(list_patent_link, columns=['patent_link'])
    # print(new_table_patent_link)

    ##rename abstract_text
    list_abstract_text = np.array([])
    abstract_text = table['abstract_text']
    for line in abstract_text:
        list_abstract_text = np.append(list_abstract_text, line)

    new_table_abstract_text = pd.DataFrame(abstract_text, columns=['abstract_text'])
    # print(new_table_patent_link)

    ###################################

    ## concatenate all of sub dataframes to the final results
    results = pd.concat([new_table_patent_number, table[['pub_date', 'priority_date', 'grant_date', 'filing_date']],
                         new_table_inventor_name, new_table_assignee_name, new_table_assignee_name_current,
                         new_table_forward_cite_no_family, new_table_forward_cite_yes_family,
                         new_table_backward_cite_yes_family, new_table_backward_cite_no_family, new_table_patent_link,
                         new_table_abstract_text], axis=1)

    return results


def count_patent(patent_table):
    """count the patent features"""

    ##count the number of assignee_name feature
    assignee_name = pd.DataFrame(patent_table['assignee_name_orig'])
    count_assignee_name = assignee_name.applymap(lambda x: str.count(x, ',') + 1)
    count_assignee_name = count_assignee_name.rename(columns={'assignee_name_orig': 'count_assignee_name'})
    # print(count_assignee_name)

    ##count the number of inventor_name feature
    inventor_name = pd.DataFrame(patent_table['inventor_name'])
    count_inventor_name = inventor_name.applymap(lambda x: str.count(x, ',') + 1)
    count_inventor_name = count_inventor_name.rename(columns={'inventor_name': 'count_inventor_name'})
    # print(count_inventor_name)

    ##count the number of assignee_name_current feature
    assignee_name_current = pd.DataFrame(patent_table['assignee_name_current'])
    # print(assignee_name_current)

    ##replace NaN as int(0)
    assignee_name_current_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',') + 1
    count_assignee_name_current = assignee_name_current.applymap(assignee_name_current_replace_NaN)
    count_assignee_name_current = count_assignee_name_current.rename(
        columns={'assignee_name_current': 'count_assignee_name_current'})
    # print(count_assignee_name_current)

    ##count forward_cite_no_family
    forward_cite_no_family = pd.DataFrame(patent_table['forward_cite_no_family'])
    forward_cite_no_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
    count_forward_cite_no_family = forward_cite_no_family.applymap(forward_cite_no_family_replace_NaN)
    count_forward_cite_no_family = count_forward_cite_no_family.rename(
        columns={'forward_cite_no_family': 'count_forward_cite_no_family'})
    # print(count_forward_cite_no_family)

    ##count forward_cite_yes_family
    forward_cite_yes_family = pd.DataFrame(patent_table['forward_cite_yes_family'])
    forward_cite_yes_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
    count_forward_cite_yes_family = forward_cite_yes_family.applymap(forward_cite_yes_family_replace_NaN)
    count_forward_cite_yes_family = count_forward_cite_yes_family.rename(
        columns={'forward_cite_yes_family': 'count_forward_cite_yes_family'})
    # print(count_forward_cite_yes_family)

    ##count backward_cite_no_family
    backward_cite_no_family = pd.DataFrame(patent_table['backward_cite_no_family'])
    backward_cite_no_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
    count_backward_cite_no_family = backward_cite_no_family.applymap(backward_cite_no_family_replace_NaN)
    count_backward_cite_no_family = count_backward_cite_no_family.rename(
        columns={'backward_cite_no_family': 'count_backward_cite_no_family'})
    # print(count_backward_cite_no_family)

    ##count backward_cite_yes_family
    backward_cite_yes_family = pd.DataFrame(patent_table['backward_cite_yes_family'])
    backward_cite_yes_family_replace_NaN = lambda x: int(0) if pd.isnull(x) else str.count(x, ',')
    count_backward_cite_yes_family = backward_cite_yes_family.applymap(backward_cite_yes_family_replace_NaN)
    count_backward_cite_yes_family = count_backward_cite_yes_family.rename(
        columns={'backward_cite_yes_family': 'count_backward_cite_yes_family'})
    # print(count_backward_cite_yes_family)

    ##concate dataframes to the final cleaned dataset
    results = pd.concat([patent_table[['patent_number', 'pub_date', 'priority_date',
                                'grant_date', 'filing_date', 'inventor_name']], count_inventor_name,
                         patent_table[['assignee_name_orig']], count_assignee_name,
                         patent_table[['assignee_name_current']], count_assignee_name_current,
                         patent_table[['forward_cite_no_family']], count_forward_cite_no_family,
                         patent_table[['forward_cite_yes_family']], count_forward_cite_yes_family,
                         patent_table[['backward_cite_no_family']], count_backward_cite_no_family,
                         patent_table[['backward_cite_yes_family']], count_backward_cite_yes_family,
                         patent_table[['patent_link', 'abstract_text']]], axis=1)

    return results


def XMLtoTEXT(patent_xml, saved_file_path):
    # read file
    tree = bs(patent_xml, "html.parser")

    # get title

    print('Title:')
    title = tree.find_all("invention-title")
    patent_title = title[0].text
    print(patent_title)

    # get number
    print("Patent number:")
    patent_number = tree.find_all('doc-number')
    patent_number = 'US' + patent_number[0].text
    patent_number_new = re.sub(r'US0', 'US', patent_number)
    print(patent_number_new)

    # get domain
    print('Domain:')
    domain = tree.find_all('classification-level')
    patent_domain = domain[0].text
    print(patent_domain)

    # get date of publication
    print("Publication date:")
    date = tree.find_all("date")
    patent_pubdate = date[0].text
    print(patent_pubdate)

    # get abstract
    print('Abstract:')
    ab = tree.find_all("abstract")
    patent_abstract = ab[0].text
    print(patent_abstract)

    # get claim
    print('Claims:')
    claims = tree.find_all("claim-text")
    for claim in claims:
        print(claim.text)

    # get description
    print('Description:')
    description = tree.find_all('description')
    for des in description:
        print(des.text)

    # save file to the place
    with open(saved_file_path + patent_number_new + '.txt', 'w') as text_file:
        text_file.write("Patent title" + '\n' + patent_title +
                        '\n' * 2 + "Patent number" + '\n' +
                        patent_number_new + '\n' * 2 + "Domain" + '\n' + patent_domain + '\n' * 2 + "Publication date" + '\n' + patent_pubdate
                        + '\n' * 2 + "Abstract" + '\n' + patent_abstract
                        + '\n' * 2 + 'Claims' + '\n')  # save patent title, number, domain, publication data_patent_details, abstract
        for claim in claims:
            text_file.write(claim.text + '\n')
        text_file.write('\n' + 'Description' + '\n')
        for des in description:
            text_file.write('\n' + des.text + '\n')

    return text_file


# to download patents (.txt) by zip file
def create_download_zip(zip_directory, zip_path, filename):
    """

        zip_directory (str): path to directory you want to zip

        zip_path (str): where you want to save zip file

        filename (str): download filename for user who download this

    """
    shutil.make_archive(zip_path+filename, 'zip', zip_directory)

    with open(zip_path+filename+'.zip', 'rb') as f:
        st.download_button(
            label = 'Download',
            data = f,
            file_name='patent.zip',
            mime= 'zip'
        )



# save input files (txt) into the folder
def save_uploadedfile(uploadedfile):
    with open(os.path.join('Data/input/US_patents/',uploadedfile.name ), 'wb') as f:
        f.write(uploadedfile.getbuffer())
        # return st.success('Saved File:{}'.format(uploadedfile.name))

# to extract problems from patents
def extractor (folder):
    input_folder = constants.DATA_INPUT + folder
    files_extension = "*." + 'txt'

    iInput = InputHandler(input_folder, files_extension)
    input_data = iInput.get_input()

    pretreat_data = PatentHandler(input_data)
    clean_patent_data = pretreat_data.pretreat_data()

    process_data = CorpusProcessor(clean_patent_data, input_folder, files_extension)
    processed_data = process_data.process_corpus()

    # convert json to dataframe
    with open('Data/graphs/US_patents/graph.json') as json_data:
        data = json.load(json_data)

    concept_df = json_normalize(data['problem_graph'], sep="_")

    concept_df = concept_df[['concept_sentence', 'concept_source', 'concept_type']]
    problem_df = concept_df.rename(columns={"concept_sentence": "problem", 'concept_source': 'patent_number',
                                            'concept_type': 'type'})
    # choose problems
    problem_new = problem_df.loc[problem_df['type'] == 'problem']

    print(problem_new)

    new_table_test = problem_new['patent_number'].apply(
        lambda x: re.search(r'(?<=US_patents\/).*?(?=.txt)', x).group())

    # assign patent number to the corresponding feature
    problem_results = problem_new.assign(patent_number=new_table_test)

    print(problem_results[['problem', 'patent_number']])
    problem_results = problem_results[['patent_number', 'problem']]
    problem_results.to_csv('data_problem/problem.csv',
                           index=False)

@st.cache
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv().encode('utf-8')


def extract_info_text():
    new = pd.DataFrame(columns=['title', 'patent_number', 'domain', 'publication_date'])

    # use glob to get all the txt files in the folder
    path = 'Data/input/US_patents'
    txt_files = glob.glob(os.path.join(path, "*.txt"))
    for f in txt_files:
        df = pd.read_csv(f, sep='\n', header=None, names=['content'])
        print(df)
        # extract patent information from text
        new = new.append({'patent_number': df.iloc[3, 0], 'title': df.iloc[1, 0],
                          'domain': df.iloc[5, 0], 'publication_date': df.iloc[7, 0]}, ignore_index=True)

    print(new)

    problem = pd.read_csv('data_problem/problem.csv')
    final = pd.merge(problem, new, on='patent_number', how='left')
    return final

def input_domain(user_input_domain):
    if user_input_domain == 'A (Human necessities)':
        domain = 'A'
    elif user_input_domain == 'B (Performing operations; transporting)':
        domain = 'B'
    elif user_input_domain == 'C (Chemistry; metallurgy)':
        domain = 'C'
    elif user_input_domain == 'D (Textiles; paper)':
        domain = 'D'
    elif user_input_domain == 'E (Fixed constructions)':
        domain = 'E'
    elif user_input_domain == 'F (Mechanical engineering; lighting; heating; weapons; blasting engines or pumps':
        domain = 'F'
    elif user_input_domain == 'G (Physics)':
        domain = 'G'
    elif user_input_domain == 'H (Electricity)':
        domain = 'H'
    return domain

# the function for choosing month period that user choosed
def choosing_month_period(problem_corpus,start_year, end_year, start_month, end_month):
    problem_corpus = problem_corpus[problem_corpus['publication_year'].between(start_year, end_year)]
    if start_year != end_year:  # 2014- 2015 #2014- 2016
        if start_month == end_month:  # /01/  /01/
            if end_year == start_year + 1:  # 2014/03/01 - 2015/03/01 #2014/01/01 - 2015/01/23 #2014/12/01 - 2015/12/23
                problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (
                    problem_corpus['publication_month'].between(start_month, 12)), 'label'] = 'true'
                problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (
                    problem_corpus['publication_month'].between(1, end_month)), 'label'] = 'true'

            elif end_year > start_year + 1:  # 2014/01/01 - 2016/01/23 #2014/12/01 - 2016/12/23 # 2014/03/01 - 2016/03/01
                if start_month == 1:  # 2014/01/01 - 2016/01/23
                    problem_corpus.loc[(
                                               problem_corpus['publication_year'] == end_year) & (
                                       problem_corpus['publication_month'].between(
                                           end_month + 1, 12)), 'label'] = 'false'
                    problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
                elif start_month == 12:  # 2014/12/01 - 2016/12/23
                    problem_corpus.loc[(
                                               problem_corpus['publication_year'] == start_year) & (
                                       problem_corpus['publication_month'].between(
                                           1, start_month - 1)), 'label'] = 'false'
                    problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
                else:  # 2014/03/01 - 2016/03/01
                    problem_corpus.loc[(
                                               problem_corpus['publication_year'] == start_year) & (
                                       problem_corpus['publication_month'].between(
                                           1, start_month - 1)), 'label'] = 'false'
                    problem_corpus.loc[(
                                               problem_corpus['publication_year'] == end_year) & (
                                       problem_corpus['publication_month'].between(
                                           end_month + 1, 12)), 'label'] = 'false'
                    problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
        if start_month > end_month:  # /03/  /01/
            if end_year == start_year + 1:  # 2014/12/01 - 2015/03/01 #2014/02/01 - 2015/01/23
                problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (
                    problem_corpus['publication_month'].between(start_month, 12)), 'label'] = 'true'
                problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (
                    problem_corpus['publication_month'].between(1, end_month)), 'label'] = 'true'

            elif end_year > start_year + 1:  # 2014/12/01 - 2016/03/01 #2014/02/01 - 2016/01/23
                problem_corpus.loc[(
                                           problem_corpus['publication_year'] == start_year) & (
                                   problem_corpus['publication_month'].between(
                                       1, start_month - 1)), 'label'] = 'false'
                problem_corpus.loc[(
                                           problem_corpus['publication_year'] == end_year) & (
                                   problem_corpus['publication_month'].between(
                                       end_month + 1, 12)), 'label'] = 'false'
                problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'

        if start_month < end_month:  # /01/  /03/
            if end_year == start_year + 1:  # 2014/01/01 - 2015/12/01 #2014/02/01 - 2015/11/23
                problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (
                    problem_corpus['publication_month'].between(start_month, 12)), 'label'] = 'true'
                problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (
                    problem_corpus['publication_month'].between(1, end_month)), 'label'] = 'true'

            elif end_year > start_year + 1:  # 2014/01/01 - 2016/12/01 #2014/02/01 - 2016/11/23
                if start_month == 1 & end_month == 12:  # 2014/01/01 - 2016/12/01
                    problem_corpus['label'] = 'true'
                elif start_month == 1:  # 2014/01/01 - 2016/03/01 #2014/01/01 - 2016/11/01
                    problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (problem_corpus[
                                                                                               'publication_month'].between(
                        end_month + 1, 12)), 'label'] = 'false'
                    problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
                elif end_month == 12:  # 2014/02/01 - 2016/12/01 #2015/02/01 - 2016/12/01
                    problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (problem_corpus[
                                                                                                 'publication_month'].between(
                        1, start_month - 1)), 'label'] = 'false'
                    problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'
                else:  # 2014/02/01 - 2016/11/23
                    problem_corpus.loc[(problem_corpus['publication_year'] == start_year) & (problem_corpus[
                                                                                                 'publication_month'].between(
                        1, start_month - 1)), 'label'] = 'false'
                    problem_corpus.loc[(problem_corpus['publication_year'] == end_year) & (problem_corpus[
                                                                                               'publication_month'].between(
                        end_month + 1, 12)), 'label'] = 'false'
                    problem_corpus.loc[(problem_corpus.label != 'false'), 'label'] = 'true'



    else:  # start_year == end_year: 2012-2012
        problem_corpus = problem_corpus[problem_corpus['publication_year'] == start_year]
        if start_month != end_month:  # 2014/03/01 - 2014/05/01 2014/01/01 - 2014/05/01 2014/03/01 - 2014/12/01
            problem_corpus.loc[problem_corpus['publication_month'].between(start_month, end_month), 'label'] = 'true'
        else:  # 2014/03/01 - 2014/03/20 #2014/01/01 - 2014/01/20
            problem_corpus.loc[problem_corpus['publication_month'] == start_month, 'label'] = 'true'

    problem_corpus = problem_corpus.loc[problem_corpus['label'] == 'true']
    problem_corpus= problem_corpus[['patent_number', 'Domain', 'First part Contradiction',
                                     'Second part Contradiction', 'publication_date', 'publication_year',
                                     'publication_month', 'label']]
    return problem_corpus

# for IDM-Similar model (word2vec)
def avg_feature_vector(sentence, model, num_features, index2word_set):
    words = sentence.split()
    feature_vec = np.zeros((num_features, ), dtype='float32')
    n_words = 0
    for word in words:
        if word in index2word_set:
            n_words += 1
            feature_vec = np.add(feature_vec, model[word])
    if (n_words > 0):
        feature_vec = np.divide(feature_vec, n_words)
    return feature_vec

def creat_query_id(dataset):
    # create query
    question = []
    for each in dataset['problem']:
        new = "What is the solution for the problem that " + each + "?"
        question.append(new)
    dataset['question'] = question

    # create id
    data = dataset.rename(columns={'Unnamed: 0': 'id'})
    return data

def csv_to_json (csv_file,json_file):
    results = []
    with open(csv_file) as csv_file:
        csvReader = csv.DictReader(csv_file)
        for row in csvReader:
            context = row['Context']
            qas = []
            content = {}
            content['id'] = row['id']
            content['question'] = row['question']
            qas.append(content)
            result = {}
            result['context'] = context
            result['qas'] = qas
            results.append(result)

    # write data to a json file
    with open(json_file, 'w') as jsonFile:
        jsonFile.write(json.dumps(results, indent=4))



def QA_prediction(prediction_file, prediction_output, model):
    # if __name__ == '__main__':
    with open(prediction_file, 'r') as pre_file:
        temp = json.loads(pre_file.read())
        predictions = model.predict(temp)

    with open(prediction_output, 'w') as json_file:
        json_file.write(json.dumps(predictions, indent=4))
    print(predictions)

def json_to_csv(input_file, output_file):
    result = pd.read_json(input_file)
    print(result.head())

    result_answer = result.iloc[0][:]
    print(result_answer.head())
    print(len(result_answer))

    df = pd.DataFrame(index=np.arange(len(result_answer)), columns=['id', 'answer'])
    print(df)

    for i in range(len(result_answer)):
        line = result_answer[i]
        print(line)
        df.iloc[i, 0] = line['id']
        df.iloc[i, 1] = line['answer']

    print(df.head())
    df.to_csv(output_file, index=False)