#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @File : 7.demo_app.py # @Author: nixin # @Date : 2021/11/27 from PIL import Image import time import datetime as datetime from scipy import spatial from gensim.models import word2vec from keras.models import load_model from LSTM.config import siamese_config from LSTM.inputHandler import create_test_data, word_embed_meta_data from simpletransformers.question_answering import QuestionAnsweringModel from functools import partial from functions import * from skcriteria import Data, MAX, MIN from skcriteria.madm import simple, closeness #===================# # Streamlit code #===================# # st.title('PatentSolver') st.markdown("

PatentSolver

", unsafe_allow_html=True) image = Image.open('profile.png') col1,mid, col2 = st.columns([50,10,30]) with col1: st.header('Achieve inventive ideas from U.S. Patents.') with col2: st.image(image, width=150) st.write('πŸš€ This demo app aims to explore latent inventive solutions from different domain U.S. patents.') st.write('🎈 Click on top left corner button ➑️ to start.') st.caption('πŸ€–οΈ According to natural language processing-related techniques associated with semantic similarity computation, question answering system, and multiple criteria decision analysis,' ' this demo app is finally here.') st.caption('πŸ“Ό Introduction video: https://youtu.be/asDsOCuFprQ') st.caption('πŸ“§ Please play it and send us feedback (nxnixin at gmail.com) since it is still very young :)') add_selectbox = st.sidebar.selectbox( "Which function would you like to choose?", ('Start from the following options',"1. Patent details scraper", "2. Prepare patents (.txt) ", "3. Extract problems from patents", "4. Similar problem extractor", "5. Problem-solution matching", "6. Inventive solutions ranking") ) #===================# # Function 1 #===================# if add_selectbox == '1. Patent details scraper': # st.title('PatentSolver_patent details') app_target = "To scrape details of the given U.S. patents" st.subheader(app_target) # user types the inputs user_input_patent_number = st.text_input('Type patent number') st.caption('1. use "," to separate if many. 2. please delete previous inputs ' 'when change or add new patents. 3. Google patent search web: https://patents.google.com/ ' '4. E.g. US10393039B2, US9533047, US8755039B2') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ prepare patents ~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # if st.button('Run'): with st.spinner('Wait for it...'): start_time = time.time() list_of_patents = patentinput( user_input_patent_number) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ Parameters for data_patent_details file ~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # path_to_data = "data_patent_details/" #### don't forget to change ## Create csv file to store the data_patent_details from the patent runs # (1) Specify column order of patents # (2) Create csv if it does not exist in the data_patent_details path data_column_order = ['inventor_name', 'assignee_name_orig', 'assignee_name_current', 'pub_date', 'priority_date', 'grant_date', 'filing_date', 'forward_cite_no_family', 'forward_cite_yes_family', 'backward_cite_no_family', 'backward_cite_yes_family', 'patent', 'url', 'abstract_text'] if 'edison_patents.csv' in os.listdir(path_to_data): os.remove( path_to_data + 'edison_patents.csv') # delete previous csv file with open(path_to_data + 'edison_patents.csv','w',newline='') as file: writer = csv.writer(file) writer.writerow(data_column_order) else: with open(path_to_data + 'edison_patents.csv','w',newline='') as file: writer = csv.writer(file) writer.writerow(data_column_order) # # ########### Run pool process ############# if __name__ == "__main__": ## Create lock to prevent collisions when processes try to write on same file l = mp.Lock() ## Use a pool of workers where the number of processes is equal to ## the number of cpus - 1 with poolcontext(processes=mp.cpu_count()-1,initializer=init,initargs=(l,)) as pool: pool.map(partial(single_process_scraper,path_to_data_file=path_to_data + 'edison_patents.csv', data_column_order=data_column_order), list_of_patents) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ clean raw data_patent_details ~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ##read Google scrawer's results table = pd.read_csv('data_patent_details/edison_patents.csv') # clean raw patent results results = clean_patent(table) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ count number ~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # results = count_patent(results) st.success('Done!') st.write("Process is finished within %s seconds" % round(time.time() - start_time, 2)) # function of running # if st.button('Run'): st.dataframe(results) csv = convert_df(results) # to download results st.download_button( label="Download", data=csv, file_name='results.csv', mime='text/csv', ) #===================# # Function 2 #===================# elif add_selectbox == '2. Prepare patents (.txt) ': file_path_saved = 'patent_text/' app_target = "To convert patents (.xml) file to patents (.txt) file" st.subheader(app_target) st.caption( 'πŸš₯ Please firstly choose "Patent Grant Full Text Data (No Images)" from https://developer.uspto.gov/product/patent-grant-full-text-dataxml to download U.S. patents (.xml) you want.') uploaded_files = st.file_uploader("Choose U.S. patent files", type='XML', accept_multiple_files=True) if st.button('run'): with st.spinner('Wait for it...'): start_time = time.time() path = os.listdir('patent_text/') if len(path) == 0: print("Directory is empty") for uploaded_file in uploaded_files: XMLtoTEXT(patent_xml=uploaded_file, saved_file_path=file_path_saved) else: print("Directory is not empty") files = glob.glob('patent_text/*') for each in files: os.remove(each) # remove previous files for uploaded_file in uploaded_files: XMLtoTEXT(patent_xml=uploaded_file, saved_file_path=file_path_saved) path = os.listdir('patent_text/') st.write(path) st.success('Done!') st.write("Process is finished within %s seconds" % round(time.time() - start_time, 2)) # download patents (txt) by zip file create_download_zip(zip_directory='patent_text', zip_path='zip_file/', filename='US_patents') #===================# # Function 3 #===================# elif add_selectbox == '3. Extract problems from patents': app_target = "To extract problems from patents" st.subheader(app_target) st.caption('🚨 Please choose one or several patents (from Function 2).') uploaded_files = st.file_uploader("Choose U.S. patents", type='txt', accept_multiple_files=True) print(uploaded_files) # check the folder is empty or not if len(os.listdir('Data/input/US_patents')) == 0: print("Directory is empty") # save uploaded files into the folder(//input/US_patents) for f in uploaded_files: if uploaded_files is not None: save_uploadedfile(f) else: print("Directory is not empty") files = glob.glob('Data/input/US_patents/*') for each in files: os.remove(each) #remove previous files # save uploaded files into the folder(//input/US_patents) for f in uploaded_files: if uploaded_files is not None: save_uploadedfile(f) if st.button('Extract'): with st.spinner('Wait for it...'): start_time = time.time() extractor('US_patents') #extract problems from this folder (//US_patents) st.success('Done!') st.write("Process is finished within %s seconds" % round(time.time() - start_time, 2)) table = extract_info_text() st.dataframe(table) csv = convert_df(table) #to download problem results st.download_button( label="Download", data = csv, file_name = 'results.csv', mime = 'text/csv', ) # ===================# # Function 4 # ===================# elif add_selectbox == '4. Similar problem extractor': app_target = "To extract similar problems from different domains U.S. patents" st.subheader(app_target) st.caption('πŸ‘¨β€πŸ’» Please type one target problem you want from Function 3.') # user types the inputs user_input_patent_sentence = st.text_input('Type one patent problem sentence') # choose patent domain select_domain = st.selectbox('Which domain it belongs to?', ['A (Human necessities)', 'B (Performing operations; transporting)', 'C (Chemistry; metallurgy)','D (Textiles; paper)', 'E (Fixed constructions)', 'F (Mechanical engineering; lighting; heating; weapons; blasting engines or pumps','G (Physics)',' H (Electricity)']) user_input_domain = input_domain(select_domain) #get domain lable like A B C # choose one of trained models select_model = st.selectbox('Which model do you want?', ['IDM-Similar', 'SAM-IDM']) st.caption('1. βš™οΈ IDM-Similar based on Word2vec neural networks \n 2. βš™οΈ SAM-IDM based on LSTM neural networks') # the function of choosing time period for comparied problems choose_time_range = st.date_input("Time Period", [datetime.date(2019, 5, 1), datetime.date(2019, 5, 31)]) start = datetime.datetime.combine(choose_time_range[0], datetime.datetime.min.time()) #recevie the input of start time end = datetime.datetime.combine(choose_time_range[1], datetime.datetime.min.time()) #recevie the input of end time st.caption('1. πŸ₯± The longer time period will result in the longer waiting time. Suggest one month. \n ' '2. πŸ—“ The problem sample corpus is from 2006-2020 year, please choose among this period. ') start_year = int(start.strftime("%Y")) start_month = int(start.strftime("%m")) end_year = int(end.strftime("%Y")) end_month = int(end.strftime("%m")) if select_model== 'IDM-Similar': select_threshold = st.slider('Similarity Threshold:', 0.6, 1.0, 0.8) else: select_threshold = st.slider('Similarity Threshold:', 0.1, 1.0, 0.2) if select_model == 'IDM-Similar': #user chooses IDM-Similar if st.button('Run'): with st.spinner('Wait for it...'): start_time = time.time() ################################ # IDM-Similar model (Word2vec) ################################ # load the trained word vector model model = word2vec.Word2Vec.load('Word2vec/trained_word2vec.model') index2word_set = set(model.wv.index2word) #read problem patent corpus problem_corpus = pd.read_csv('data_problem_corpus/problem_corpus_full_cleaned.csv') # problem_corpus = problem_corpus.head(500) print('--------------------') print(problem_corpus.columns) print('--------------------') target_problem = user_input_patent_sentence target_domain = user_input_domain # remove the same domain's problems problem_corpus = problem_corpus[problem_corpus.Domain != target_domain] # choose the month period problem_corpus = choosing_month_period(problem_corpus = problem_corpus, start_year = start_year, end_year = end_year, start_month = start_month, end_month = end_month) print(problem_corpus) print(problem_corpus.columns) print('=======') # compute the similarity value value_1=[] for each_problem in problem_corpus['First part Contradiction']: s1_afv = avg_feature_vector(target_problem, model=model, num_features=100, index2word_set=index2word_set) s2_afv = avg_feature_vector(each_problem, model=model, num_features=100, index2word_set=index2word_set) sim_value = format( 1 - spatial.distance.cosine(s1_afv, s2_afv), '.2f') value_1.append(sim_value) print("++++++++++") problem_corpus[['similarity_value_1', 'target_problem']] = value_1, target_problem value_2=[] for each_problem in problem_corpus['Second part Contradiction']: s1_afv = avg_feature_vector(target_problem, model=model, num_features=100, index2word_set=index2word_set) s2_afv = avg_feature_vector(each_problem, model=model, num_features=100, index2word_set=index2word_set) sim_value = format( 1 - spatial.distance.cosine(s1_afv, s2_afv), '.2f') value_2.append(sim_value) problem_corpus['similarity_value_2'] = value_2 print("++++++++++") print(problem_corpus) print(problem_corpus.columns) print("++++++++++") problem_corpus_1 = problem_corpus[['patent_number', 'Domain', 'First part Contradiction', 'publication_date', 'publication_year','publication_month', 'label', 'similarity_value_1', 'target_problem']] problem_corpus_1 = problem_corpus_1.rename(columns = {'First part Contradiction': 'problem', 'similarity_value_1' : 'similarity_value'}) problem_corpus_2 = problem_corpus[ ['patent_number', 'Domain', 'Second part Contradiction', 'publication_date', 'publication_year', 'publication_month', 'label', 'similarity_value_2', 'target_problem']] problem_corpus_2 = problem_corpus_2.rename(columns={'Second part Contradiction': 'problem', 'similarity_value_2' : 'similarity_value'}) problem_corpus_final = pd.concat([problem_corpus_1, problem_corpus_2], ignore_index=True, sort=False) print(problem_corpus_final) print(problem_corpus_final.columns) print(type(select_threshold)) print(select_threshold) problem_corpus_final.to_csv('result_test.csv',index=False) print('=================') # choose the resutls that are bigger than the similarity threshold problem_corpus_final = problem_corpus_final[problem_corpus_final['similarity_value'].astype(str)>= str(select_threshold)] problem_corpus_final= problem_corpus_final[['patent_number', 'Domain','problem', 'similarity_value', 'target_problem']] # dropping duplicate values problem_corpus_final = problem_corpus_final.drop_duplicates(ignore_index=True) problem_corpus_final.to_csv('Word2vec/simialrity_result/test.csv', index=False) print(problem_corpus_final) st.success('Done!') st.write("Process is finished within %s seconds" % round(time.time() - start_time, 2)) # show results st.dataframe(problem_corpus_final) csv = convert_df(problem_corpus_final) # to download results st.download_button( label="Download", data=csv, file_name='results.csv', mime='text/csv', ) # ================== else: #select_model == 'SAM-IDM': if st.button('Run'): with st.spinner('Wait for it...'): start_time = time.time() ################################ # SAM-IDM model (LSTM) ################################ df = pd.read_csv('LSTM/sample_data.csv') print(df.head()) sentences1 = list(df['sentences1']) sentences2 = list(df['sentences2']) tokenizer, embedding_matrix = word_embed_meta_data(sentences1 + sentences2, siamese_config['EMBEDDING_DIM']) model = load_model( "LSTM/choosed_checkpoit/lstm_50_50_0.17_0.25.h5", None, False) problem_corpus = pd.read_csv( 'data_problem_corpus/problem_corpus_full_cleaned.csv') target_problem = user_input_patent_sentence target_domain = user_input_domain # remove the same domain's problems problem_corpus = problem_corpus[problem_corpus.Domain != target_domain] # choose the month period problem_corpus = choosing_month_period(problem_corpus=problem_corpus, start_year=start_year, end_year=end_year, start_month=start_month, end_month=end_month) problem_corpus.reset_index(drop=True, inplace=True) # reset the index of the dataframe(must do this step) print(problem_corpus) print(problem_corpus.columns) print('=======') # read specific column column1 = problem_corpus['First part Contradiction'] print(type(column1)) print(column1.head()) print('++++++++++++++++') for i in range(0, len(problem_corpus)): ss1 = column1[i] ss2 = target_problem test_sentence_pairs = [(ss1, ss2)] test_data_x1, test_data_x2, leaks_test = create_test_data(tokenizer, test_sentence_pairs, siamese_config['MAX_SEQUENCE_LENGTH']) pred = model.predict([test_data_x1, test_data_x2, leaks_test], batch_size=1000, verbose=2).ravel() problem_corpus.loc[i, 'similarity_value_1'] = pred # ========== column2 = problem_corpus['Second part Contradiction'] for i in range(0, len(problem_corpus)): ss1 = column2[i] ss2 = target_problem test_sentence_pairs = [(ss1, ss2)] test_data_x1, test_data_x2, leaks_test = create_test_data(tokenizer, test_sentence_pairs, siamese_config['MAX_SEQUENCE_LENGTH']) pred = model.predict([test_data_x1, test_data_x2, leaks_test], batch_size=1000, verbose=2).ravel() problem_corpus.loc[i, 'similarity_value_2'] = pred problem_corpus['target_problem'] = target_problem problem_corpus = problem_corpus.round({'similarity_value_1': 2, 'similarity_value_2': 2}) # save 4 digits after point print(problem_corpus.head()) print(problem_corpus.columns) problem_corpus_1 = problem_corpus[['patent_number', 'Domain', 'First part Contradiction', 'publication_date', 'publication_year','publication_month', 'label', 'similarity_value_1', 'target_problem']] problem_corpus_1 = problem_corpus_1.rename(columns = {'First part Contradiction': 'problem', 'similarity_value_1' : 'similarity_value'}) problem_corpus_2 = problem_corpus[ ['patent_number', 'Domain', 'Second part Contradiction', 'publication_date', 'publication_year', 'publication_month', 'label', 'similarity_value_2', 'target_problem']] problem_corpus_2 = problem_corpus_2.rename(columns={'Second part Contradiction': 'problem', 'similarity_value_2' : 'similarity_value'}) problem_corpus_final = pd.concat([problem_corpus_1, problem_corpus_2], ignore_index=True, sort=False) print(problem_corpus_final) print(problem_corpus_final.columns) print(type(select_threshold)) print(select_threshold) print('=================') # choose the resutls that are bigger than the similarity threshold problem_corpus_final = problem_corpus_final[problem_corpus_final['similarity_value']>= select_threshold] problem_corpus_final= problem_corpus_final[['patent_number', 'Domain','problem', 'similarity_value', 'target_problem']] # dropping duplicate values problem_corpus_final = problem_corpus_final.drop_duplicates(ignore_index=True) print(problem_corpus_final) st.success('Done!') st.write("Process is finished within %s seconds" % round(time.time() - start_time, 2)) # show results st.dataframe(problem_corpus_final) csv = convert_df(problem_corpus_final) # to download results st.download_button( label="Download", data=csv, file_name='results.csv', mime='text/csv', ) # future function: add function of providing own dataset # ===================# # Function 5 # ===================# if add_selectbox == '5. Problem-solution matching': # st.title('PatentSolver_inventive solution matching') app_target = "To provide latent inventive solutions for the target problem" st.subheader(app_target) st.caption('βŒ¨οΈβ€ Please use similar problem results from Function 4. ') st.caption('🚁 IDM-Matching model behind here is based on XLNet neural networks.') uploaded_file = st.file_uploader("upload your similar problem file", type='csv') if uploaded_file is not None: # choose GPU select_GPU = st.selectbox('Do you have GPU(s)?', ['No', 'Yes']) st.caption('1. πŸ’° We don\'t provide GPU since the cost. \n 2. 🎒 Please choose Yes when you run it on your own ' 'GPU and it will greatly accelerate the process.') if select_GPU == 'No': use_cuda = "False" else: use_cuda = "True" if st.button('Run'): with st.spinner('Wait for it...'): start_time = time.time() data = pd.read_csv(uploaded_file) data = creat_query_id(data) context_infor = pd.read_csv( 'data_problem_corpus/problem_corpus_full_cleaned.csv') context_infor = context_infor[['patent_number', 'Context']] # get context table final_context = pd.merge(data, context_infor, on=['patent_number']) final_context.to_csv( 'data_context/context_information.csv', index=False) print('++++++++++++') print(final_context.head()) print(final_context.columns) csv_file = 'data_context/context_information.csv' json_file = 'data_context/context_information.json' csv_to_json(csv_file, json_file) # convert context.csv to context.json prediction_file = 'data_context/context_information.json' prediction_output = 'data_context/QA_result.json' model = QuestionAnsweringModel('xlnet', 'trained_xlnet_model', use_cuda=False) # when don't have GPU, choose use_cuda=False QA_prediction(prediction_file, prediction_output, model) # predict solutions by QA system input_file = 'data_context/QA_result.json' output_file = 'data_context/QA_result.csv' json_to_csv(input_file, output_file) similarity_result = pd.read_csv( 'data_context/context_information.csv') id_result = pd.read_csv( 'data_context/QA_result.csv') final_result = similarity_result.merge(id_result, on=['id'], how='left') print(final_result.head()) final_result = final_result[ ['target_problem', 'problem', 'similarity_value', 'patent_number', 'Domain', 'answer']] final_result = final_result.rename( columns={'problem': 'similar_problem', 'answer': 'latent_inventive_solutions'}) final_result.to_csv( 'data_context/QA_result_final.csv', index=False) st.dataframe(final_result) csv = convert_df(final_result) # to download solution results st.download_button( label="Download", data=csv, file_name='results.csv', mime='text/csv', ) st.success('Done!') st.write("Process is finished within %s seconds" % round(time.time() - start_time, 2)) # ===================# # Function 6 # ===================# if add_selectbox == '6. Inventive solutions ranking': # st.title('PatentSolver_rank latent inventive solutions') app_target = "To rank latent inventive solutions" st.subheader(app_target) st.caption('βŒ¨οΈβ€ Please use similar problem results from Function 5. ') st.caption('πŸ™‡β€ ️PatRIS model behind here is based on the multiple criteria decision analysis approach named TOPSIS.') uploaded_file = st.file_uploader("upload your problem-solution file", type='csv') if uploaded_file is not None: if st.button('Run'): st.write('Weight assignments:') col1, col2, col3, col4, col5, col6 = st.columns(6) col1.metric('IN', '0.1') col2.metric('FCNF', '0.3') col3.metric('FCYF', '0.1') col4.metric('BCNF', '0.1') col5.metric('BCYF', '0.1') col6.metric('SV', '0.3') with st.expander('See explanation'): st.write('Inventive solutions ranking features: \n' 'IN (inventor_name): the number of inventors involved in the patent.\n' 'FCNF (forward_cite_no_family): Forward Citations that are not family-to-family cites.\n' 'FCYF (forward_cite_yes_family): Forward Citations that are family-to-family cites.\n' 'BCNF (backward_cite_no_family): Backward Citations that are not family-to-family cites.\n' 'BCYF (backward_cite_yes_family): Backward Citations that are family-to-family cites.\n' 'SV (similarity_value): similarity value between similar pairwise problems.\n') with st.spinner('Wait for it...'): start_time = time.time() df = pd.read_csv(uploaded_file) print(df.columns) patent_number = [] for patent in df['patent_number']: # take patent numbers patent_number.append(patent) print(patent_number) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ Parameters for data_patent_details file ~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # path_to_data = "MCDA/data/" #### don't forget to change ## Create csv file to store the data_patent_details from the patent runs # (1) Specify column order of patents # (2) Create csv if it does not exist in the data_patent_details path data_column_order = ['inventor_name', 'assignee_name_orig', 'assignee_name_current', 'pub_date', 'priority_date', 'grant_date', 'filing_date', 'forward_cite_no_family', 'forward_cite_yes_family', 'backward_cite_no_family', 'backward_cite_yes_family', 'patent', 'url', 'abstract_text'] if 'edison_patents.csv' in os.listdir(path_to_data): os.remove(path_to_data + 'edison_patents.csv') # delete previous csv file with open(path_to_data + 'edison_patents.csv', 'w', newline='') as file: writer = csv.writer(file) writer.writerow(data_column_order) else: with open(path_to_data + 'edison_patents.csv', 'w', newline='') as file: writer = csv.writer(file) writer.writerow(data_column_order) # # ########### Run pool process ############# if __name__ == "__main__": ## Create lock to prevent collisions when processes try to write on same file l = mp.Lock() ## Use a pool of workers where the number of processes is equal to ## the number of cpus - 1 with poolcontext(processes=mp.cpu_count() - 1, initializer=init, initargs=(l,)) as pool: pool.map(partial(single_process_scraper, path_to_data_file=path_to_data + 'edison_patents.csv', data_column_order=data_column_order), patent_number) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ clean raw data_patent_details ~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ##read Google scrawer's results table = pd.read_csv( 'MCDA/data/edison_patents.csv') # clean raw patent results results = clean_patent(table) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ count number ~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # results = count_patent(results) print(results.columns) results.to_csv( 'MCDA/data/cleaned_count_patents.csv', index=False) results_show = results[['patent_number', 'inventor_name', 'count_inventor_name', 'assignee_name_orig', 'count_assignee_name', 'assignee_name_current', 'count_assignee_name_current', 'forward_cite_no_family', 'count_forward_cite_no_family', 'forward_cite_yes_family', 'count_forward_cite_yes_family', 'backward_cite_no_family', 'count_backward_cite_no_family', 'backward_cite_yes_family', 'count_backward_cite_yes_family']] st.write('Related patent details:') st.dataframe(results_show) # show patent count details print(len(df)) print('==========') # clean null soltuions solutions = df[df['latent_inventive_solutions'] != '[]'] print(len(solutions)) count = results_show[['patent_number', 'count_inventor_name', 'count_forward_cite_no_family', 'count_forward_cite_yes_family', 'count_backward_cite_no_family', 'count_backward_cite_yes_family']] count = pd.merge(count, solutions[['patent_number', 'similarity_value']], on='patent_number') st.write('Solutions ranking criteria:') st.dataframe(count) # show ranking criteria details print('=======') print(count.columns) ## project the goodness for each column criteria_data = Data(count.iloc[:, 1:7], [MAX, MAX, MAX, MAX, MAX, MAX], anames=count['patent_number'], cnames=count.columns[1:7], weights=[0.1, 0.3, 0.1, 0.1, 0.1, 0.3]) ##assign weights to attributes print(criteria_data) print('++++++++') print('==========') dm = closeness.TOPSIS( mnorm="sum") # change the normalization criteria of the alternative matric to sum (divide every value by the sum opf their criteria) dec = dm.decide(criteria_data) print(dec) print("Ideal:", dec.e_.ideal) print("Anti-Ideal:", dec.e_.anti_ideal) print("Closeness:", dec.e_.closeness) ##print each rank's value count['rank_topsis'] = dec.e_.closeness count = count.sort_values(by='rank_topsis', ascending=False) print(count.columns) print(count) print(len(count)) rank = [] for i in range(len(count)): i = i + 1 rank.append(i) print(rank) count['rank'] = rank print(count) print(count.columns) count = count[['rank', 'patent_number', 'count_inventor_name', 'count_forward_cite_no_family', 'count_forward_cite_yes_family', 'count_backward_cite_no_family', 'count_backward_cite_yes_family', 'similarity_value']] final = pd.merge(count, df, on=('patent_number', 'similarity_value')) final = final[ ['target_problem', 'latent_inventive_solutions', 'rank', 'similar_problem', 'similarity_value', 'Domain', 'patent_number', 'count_inventor_name', 'count_forward_cite_no_family', 'count_forward_cite_yes_family', 'count_backward_cite_no_family', 'count_backward_cite_yes_family']] print('+++++') print(final.columns) st.write('Inventive solutions ranking results according to TOPSIS:') st.dataframe(final) st.success('Done!') st.write("Process is finished within %s seconds" % round(time.time() - start_time, 2)) csv = convert_df(final) # to download solution results st.download_button( label="Download", data=csv, file_name='results.csv', mime='text/csv', )