brokentest / segment-anything-2 /sam2 /sam2_video_predictor.py
jhj0517
Add segment-anything-2
f5ba9ea
raw
history blame
45 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
import torch
from tqdm import tqdm
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
class SAM2VideoPredictor(SAM2Base):
"""The predictor class to handle user interactions and manage inference states."""
def __init__(
self,
fill_hole_area=0,
# whether to apply non-overlapping constraints on the output object masks
non_overlap_masks=False,
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
clear_non_cond_mem_around_input=False,
# whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
clear_non_cond_mem_for_multi_obj=False,
**kwargs,
):
super().__init__(**kwargs)
self.fill_hole_area = fill_hole_area
self.non_overlap_masks = non_overlap_masks
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
@torch.inference_mode()
def init_state(
self,
video_path,
offload_video_to_cpu=False,
offload_state_to_cpu=False,
async_loading_frames=False,
):
"""Initialize a inference state."""
images, video_height, video_width = load_video_frames(
video_path=video_path,
image_size=self.image_size,
offload_video_to_cpu=offload_video_to_cpu,
async_loading_frames=async_loading_frames,
)
inference_state = {}
inference_state["images"] = images
inference_state["num_frames"] = len(images)
# whether to offload the video frames to CPU memory
# turning on this option saves the GPU memory with only a very small overhead
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
# whether to offload the inference state to CPU memory
# turning on this option saves the GPU memory at the cost of a lower tracking fps
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
# and from 24 to 21 when tracking two objects)
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
# the original video height and width, used for resizing final output scores
inference_state["video_height"] = video_height
inference_state["video_width"] = video_width
inference_state["device"] = torch.device("cuda")
if offload_state_to_cpu:
inference_state["storage_device"] = torch.device("cpu")
else:
inference_state["storage_device"] = torch.device("cuda")
# inputs on each frame
inference_state["point_inputs_per_obj"] = {}
inference_state["mask_inputs_per_obj"] = {}
# visual features on a small number of recently visited frames for quick interactions
inference_state["cached_features"] = {}
# values that don't change across frames (so we only need to hold one copy of them)
inference_state["constants"] = {}
# mapping between client-side object id and model-side object index
inference_state["obj_id_to_idx"] = OrderedDict()
inference_state["obj_idx_to_id"] = OrderedDict()
inference_state["obj_ids"] = []
# A storage to hold the model's tracking results and states on each frame
inference_state["output_dict"] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
inference_state["output_dict_per_obj"] = {}
# A temporary storage to hold new outputs when user interact with a frame
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
inference_state["temp_output_dict_per_obj"] = {}
# Frames that already holds consolidated outputs from click or mask inputs
# (we directly use their consolidated outputs during tracking)
inference_state["consolidated_frame_inds"] = {
"cond_frame_outputs": set(), # set containing frame indices
"non_cond_frame_outputs": set(), # set containing frame indices
}
# metadata for each tracking frame (e.g. which direction it's tracked)
inference_state["tracking_has_started"] = False
inference_state["frames_already_tracked"] = {}
# Warm up the visual backbone and cache the image feature on frame 0
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
return inference_state
def _obj_id_to_idx(self, inference_state, obj_id):
"""Map client-side object id to model-side object index."""
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
if obj_idx is not None:
return obj_idx
# This is a new object id not sent to the server before. We only allow adding
# new objects *before* the tracking starts.
allow_new_object = not inference_state["tracking_has_started"]
if allow_new_object:
# get the next object slot
obj_idx = len(inference_state["obj_id_to_idx"])
inference_state["obj_id_to_idx"][obj_id] = obj_idx
inference_state["obj_idx_to_id"][obj_idx] = obj_id
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
# set up input and output structures for this object
inference_state["point_inputs_per_obj"][obj_idx] = {}
inference_state["mask_inputs_per_obj"][obj_idx] = {}
inference_state["output_dict_per_obj"][obj_idx] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
inference_state["temp_output_dict_per_obj"][obj_idx] = {
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
}
return obj_idx
else:
raise RuntimeError(
f"Cannot add new object id {obj_id} after tracking starts. "
f"All existing object ids: {inference_state['obj_ids']}. "
f"Please call 'reset_state' to restart from scratch."
)
def _obj_idx_to_id(self, inference_state, obj_idx):
"""Map model-side object index to client-side object id."""
return inference_state["obj_idx_to_id"][obj_idx]
def _get_obj_num(self, inference_state):
"""Get the total number of unique object ids received so far in this session."""
return len(inference_state["obj_idx_to_id"])
@torch.inference_mode()
def add_new_points(
self,
inference_state,
frame_idx,
obj_id,
points,
labels,
clear_old_points=True,
normalize_coords=True,
):
"""Add new points to a frame."""
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
if not isinstance(points, torch.Tensor):
points = torch.tensor(points, dtype=torch.float32)
if not isinstance(labels, torch.Tensor):
labels = torch.tensor(labels, dtype=torch.int32)
if points.dim() == 2:
points = points.unsqueeze(0) # add batch dimension
if labels.dim() == 1:
labels = labels.unsqueeze(0) # add batch dimension
if normalize_coords:
video_H = inference_state["video_height"]
video_W = inference_state["video_width"]
points = points / torch.tensor([video_W, video_H]).to(points.device)
# scale the (normalized) coordinates by the model's internal image size
points = points * self.image_size
points = points.to(inference_state["device"])
labels = labels.to(inference_state["device"])
if not clear_old_points:
point_inputs = point_inputs_per_frame.get(frame_idx, None)
else:
point_inputs = None
point_inputs = concat_points(point_inputs, points, labels)
point_inputs_per_frame[frame_idx] = point_inputs
mask_inputs_per_frame.pop(frame_idx, None)
# If this frame hasn't been tracked before, we treat it as an initial conditioning
# frame, meaning that the inputs points are to generate segments on this frame without
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
# the input points will be used to correct the already tracked masks.
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
# whether to track in reverse time order
if is_init_cond_frame:
reverse = False
else:
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
# Add a frame to conditioning output if it's an initial conditioning frame or
# if the model sees all frames receiving clicks/mask as conditioning frames.
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Get any previously predicted mask logits on this object and feed it along with
# the new clicks into the SAM mask decoder.
prev_sam_mask_logits = None
# lookup temporary output dict first, which contains the most recent output
# (if not found, then lookup conditioning and non-conditioning frame output)
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
if prev_out is None:
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
if prev_out is None:
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
if prev_out is not None and prev_out["pred_masks"] is not None:
prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True)
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
current_out, _ = self._run_single_frame_inference(
inference_state=inference_state,
output_dict=obj_output_dict, # run on the slice of a single object
frame_idx=frame_idx,
batch_size=1, # run on the slice of a single object
is_init_cond_frame=is_init_cond_frame,
point_inputs=point_inputs,
mask_inputs=None,
reverse=reverse,
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
# allows us to enforce non-overlapping constraints on all objects before encoding
# them into memory.
run_mem_encoder=False,
prev_sam_mask_logits=prev_sam_mask_logits,
)
# Add the output to the output dict (to be used as future memory)
obj_temp_output_dict[storage_key][frame_idx] = current_out
# Resize the output mask to the original video resolution
obj_ids = inference_state["obj_ids"]
consolidated_out = self._consolidate_temp_output_across_obj(
inference_state,
frame_idx,
is_cond=is_cond,
run_mem_encoder=False,
consolidate_at_video_res=True,
)
_, video_res_masks = self._get_orig_video_res_output(
inference_state, consolidated_out["pred_masks_video_res"]
)
return frame_idx, obj_ids, video_res_masks
@torch.inference_mode()
def add_new_mask(
self,
inference_state,
frame_idx,
obj_id,
mask,
):
"""Add new mask to a frame."""
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
if not isinstance(mask, torch.Tensor):
mask = torch.tensor(mask, dtype=torch.bool)
assert mask.dim() == 2
mask_H, mask_W = mask.shape
mask_inputs_orig = mask[None, None] # add batch and channel dimension
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
# resize the mask if it doesn't match the model's image size
if mask_H != self.image_size or mask_W != self.image_size:
mask_inputs = torch.nn.functional.interpolate(
mask_inputs_orig,
size=(self.image_size, self.image_size),
align_corners=False,
mode="bilinear",
antialias=True, # use antialias for downsampling
)
mask_inputs = (mask_inputs >= 0.5).float()
else:
mask_inputs = mask_inputs_orig
mask_inputs_per_frame[frame_idx] = mask_inputs
point_inputs_per_frame.pop(frame_idx, None)
# If this frame hasn't been tracked before, we treat it as an initial conditioning
# frame, meaning that the inputs points are to generate segments on this frame without
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
# the input points will be used to correct the already tracked masks.
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
# whether to track in reverse time order
if is_init_cond_frame:
reverse = False
else:
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
# Add a frame to conditioning output if it's an initial conditioning frame or
# if the model sees all frames receiving clicks/mask as conditioning frames.
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
current_out, _ = self._run_single_frame_inference(
inference_state=inference_state,
output_dict=obj_output_dict, # run on the slice of a single object
frame_idx=frame_idx,
batch_size=1, # run on the slice of a single object
is_init_cond_frame=is_init_cond_frame,
point_inputs=None,
mask_inputs=mask_inputs,
reverse=reverse,
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
# allows us to enforce non-overlapping constraints on all objects before encoding
# them into memory.
run_mem_encoder=False,
)
# Add the output to the output dict (to be used as future memory)
obj_temp_output_dict[storage_key][frame_idx] = current_out
# Resize the output mask to the original video resolution
obj_ids = inference_state["obj_ids"]
consolidated_out = self._consolidate_temp_output_across_obj(
inference_state,
frame_idx,
is_cond=is_cond,
run_mem_encoder=False,
consolidate_at_video_res=True,
)
_, video_res_masks = self._get_orig_video_res_output(
inference_state, consolidated_out["pred_masks_video_res"]
)
return frame_idx, obj_ids, video_res_masks
def _get_orig_video_res_output(self, inference_state, any_res_masks):
"""
Resize the object scores to the original video resolution (video_res_masks)
and apply non-overlapping constraints for final output.
"""
device = inference_state["device"]
video_H = inference_state["video_height"]
video_W = inference_state["video_width"]
any_res_masks = any_res_masks.to(device, non_blocking=True)
if any_res_masks.shape[-2:] == (video_H, video_W):
video_res_masks = any_res_masks
else:
video_res_masks = torch.nn.functional.interpolate(
any_res_masks,
size=(video_H, video_W),
mode="bilinear",
align_corners=False,
)
if self.non_overlap_masks:
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
return any_res_masks, video_res_masks
def _consolidate_temp_output_across_obj(
self,
inference_state,
frame_idx,
is_cond,
run_mem_encoder,
consolidate_at_video_res=False,
):
"""
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
a frame into a single output for all objects, including
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
`output_dict_per_obj` for this frame) or leave them as placeholder values
(if they don't exist in `output_dict_per_obj` for this frame);
2) if specified, rerun memory encoder after apply non-overlapping constraints
on the object scores.
"""
batch_size = self._get_obj_num(inference_state)
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Optionally, we allow consolidating the temporary outputs at the original
# video resolution (to provide a better editing experience for mask prompts).
if consolidate_at_video_res:
assert not run_mem_encoder, "memory encoder cannot run at video resolution"
consolidated_H = inference_state["video_height"]
consolidated_W = inference_state["video_width"]
consolidated_mask_key = "pred_masks_video_res"
else:
consolidated_H = consolidated_W = self.image_size // 4
consolidated_mask_key = "pred_masks"
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
# will be added when rerunning the memory encoder after applying non-overlapping
# constraints to object scores. Its "pred_masks" are prefilled with a large
# negative value (NO_OBJ_SCORE) to represent missing objects.
consolidated_out = {
"maskmem_features": None,
"maskmem_pos_enc": None,
consolidated_mask_key: torch.full(
size=(batch_size, 1, consolidated_H, consolidated_W),
fill_value=NO_OBJ_SCORE,
dtype=torch.float32,
device=inference_state["storage_device"],
),
"obj_ptr": torch.full(
size=(batch_size, self.hidden_dim),
fill_value=NO_OBJ_SCORE,
dtype=torch.float32,
device=inference_state["device"],
),
}
empty_mask_ptr = None
for obj_idx in range(batch_size):
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
# we fall back and look up its previous output in "output_dict_per_obj".
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
# "output_dict_per_obj" to find a previous output for this object.
if out is None:
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
if out is None:
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
# placeholder above) and set its object pointer to be a dummy pointer.
if out is None:
# Fill in dummy object pointers for those objects without any inputs or
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
# i.e. when we need to build the memory for tracking).
if run_mem_encoder:
if empty_mask_ptr is None:
empty_mask_ptr = self._get_empty_mask_ptr(
inference_state, frame_idx
)
# fill object pointer with a dummy pointer (based on an empty mask)
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
continue
# Add the temporary object output mask to consolidated output mask
obj_mask = out["pred_masks"]
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
else:
# Resize first if temporary object mask has a different resolution
resized_obj_mask = torch.nn.functional.interpolate(
obj_mask,
size=consolidated_pred_masks.shape[-2:],
mode="bilinear",
align_corners=False,
)
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
# Optionally, apply non-overlapping constraints on the consolidated scores
# and rerun the memory encoder
if run_mem_encoder:
device = inference_state["device"]
high_res_masks = torch.nn.functional.interpolate(
consolidated_out["pred_masks"].to(device, non_blocking=True),
size=(self.image_size, self.image_size),
mode="bilinear",
align_corners=False,
)
if self.non_overlap_masks_for_mem_enc:
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
inference_state=inference_state,
frame_idx=frame_idx,
batch_size=batch_size,
high_res_masks=high_res_masks,
is_mask_from_pts=True, # these frames are what the user interacted with
)
consolidated_out["maskmem_features"] = maskmem_features
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
return consolidated_out
def _get_empty_mask_ptr(self, inference_state, frame_idx):
"""Get a dummy object pointer based on an empty mask on the current frame."""
# A dummy (empty) mask with a single object
batch_size = 1
mask_inputs = torch.zeros(
(batch_size, 1, self.image_size, self.image_size),
dtype=torch.float32,
device=inference_state["device"],
)
# Retrieve correct image features
(
_,
_,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
) = self._get_image_feature(inference_state, frame_idx, batch_size)
# Feed the empty mask and image feature above to get a dummy object pointer
current_out = self.track_step(
frame_idx=frame_idx,
is_init_cond_frame=True,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
point_inputs=None,
mask_inputs=mask_inputs,
output_dict={},
num_frames=inference_state["num_frames"],
track_in_reverse=False,
run_mem_encoder=False,
prev_sam_mask_logits=None,
)
return current_out["obj_ptr"]
@torch.inference_mode()
def propagate_in_video_preflight(self, inference_state):
"""Prepare inference_state and consolidate temporary outputs before tracking."""
# Tracking has started and we don't allow adding new objects until session is reset.
inference_state["tracking_has_started"] = True
batch_size = self._get_obj_num(inference_state)
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
# add them into "output_dict".
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
output_dict = inference_state["output_dict"]
# "consolidated_frame_inds" contains indices of those frames where consolidated
# temporary outputs have been added (either in this call or any previous calls
# to `propagate_in_video_preflight`).
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
for is_cond in [False, True]:
# Separately consolidate conditioning and non-conditioning temp outptus
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Find all the frames that contain temporary outputs for any objects
# (these should be the frames that have just received clicks for mask inputs
# via `add_new_points` or `add_new_mask`)
temp_frame_inds = set()
for obj_temp_output_dict in temp_output_dict_per_obj.values():
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
consolidated_frame_inds[storage_key].update(temp_frame_inds)
# consolidate the temprary output across all objects on this frame
for frame_idx in temp_frame_inds:
consolidated_out = self._consolidate_temp_output_across_obj(
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
)
# merge them into "output_dict" and also create per-object slices
output_dict[storage_key][frame_idx] = consolidated_out
self._add_output_per_object(
inference_state, frame_idx, consolidated_out, storage_key
)
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
)
if clear_non_cond_mem:
# clear non-conditioning memory of the surrounding frames
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
# clear temporary outputs in `temp_output_dict_per_obj`
for obj_temp_output_dict in temp_output_dict_per_obj.values():
obj_temp_output_dict[storage_key].clear()
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
# output on the same frame in "non_cond_frame_outputs"
for frame_idx in output_dict["cond_frame_outputs"]:
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
for obj_output_dict in inference_state["output_dict_per_obj"].values():
for frame_idx in obj_output_dict["cond_frame_outputs"]:
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
assert frame_idx in output_dict["cond_frame_outputs"]
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
# with either points or mask inputs (which should be true under a correct workflow).
all_consolidated_frame_inds = (
consolidated_frame_inds["cond_frame_outputs"]
| consolidated_frame_inds["non_cond_frame_outputs"]
)
input_frames_inds = set()
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
input_frames_inds.update(point_inputs_per_frame.keys())
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
input_frames_inds.update(mask_inputs_per_frame.keys())
assert all_consolidated_frame_inds == input_frames_inds
@torch.inference_mode()
def propagate_in_video(
self,
inference_state,
start_frame_idx=None,
max_frame_num_to_track=None,
reverse=False,
):
"""Propagate the input points across frames to track in the entire video."""
self.propagate_in_video_preflight(inference_state)
output_dict = inference_state["output_dict"]
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
obj_ids = inference_state["obj_ids"]
num_frames = inference_state["num_frames"]
batch_size = self._get_obj_num(inference_state)
if len(output_dict["cond_frame_outputs"]) == 0:
raise RuntimeError("No points are provided; please add points first")
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
)
# set start index, end index, and processing order
if start_frame_idx is None:
# default: start from the earliest frame with input points
start_frame_idx = min(output_dict["cond_frame_outputs"])
if max_frame_num_to_track is None:
# default: track all the frames in the video
max_frame_num_to_track = num_frames
if reverse:
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
if start_frame_idx > 0:
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
else:
processing_order = [] # skip reverse tracking if starting from frame 0
else:
end_frame_idx = min(
start_frame_idx + max_frame_num_to_track, num_frames - 1
)
processing_order = range(start_frame_idx, end_frame_idx + 1)
for frame_idx in tqdm(processing_order, desc="propagate in video"):
# We skip those frames already in consolidated outputs (these are frames
# that received input clicks or mask). Note that we cannot directly run
# batched forward on them via `_run_single_frame_inference` because the
# number of clicks on each object might be different.
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
storage_key = "cond_frame_outputs"
current_out = output_dict[storage_key][frame_idx]
pred_masks = current_out["pred_masks"]
if clear_non_cond_mem:
# clear non-conditioning memory of the surrounding frames
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
storage_key = "non_cond_frame_outputs"
current_out = output_dict[storage_key][frame_idx]
pred_masks = current_out["pred_masks"]
else:
storage_key = "non_cond_frame_outputs"
current_out, pred_masks = self._run_single_frame_inference(
inference_state=inference_state,
output_dict=output_dict,
frame_idx=frame_idx,
batch_size=batch_size,
is_init_cond_frame=False,
point_inputs=None,
mask_inputs=None,
reverse=reverse,
run_mem_encoder=True,
)
output_dict[storage_key][frame_idx] = current_out
# Create slices of per-object outputs for subsequent interaction with each
# individual object after tracking.
self._add_output_per_object(
inference_state, frame_idx, current_out, storage_key
)
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
# Resize the output mask to the original video resolution (we directly use
# the mask scores on GPU for output to avoid any CPU conversion in between)
_, video_res_masks = self._get_orig_video_res_output(
inference_state, pred_masks
)
yield frame_idx, obj_ids, video_res_masks
def _add_output_per_object(
self, inference_state, frame_idx, current_out, storage_key
):
"""
Split a multi-object output into per-object output slices and add them into
`output_dict_per_obj`. The resulting slices share the same tensor storage.
"""
maskmem_features = current_out["maskmem_features"]
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
maskmem_pos_enc = current_out["maskmem_pos_enc"]
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
output_dict_per_obj = inference_state["output_dict_per_obj"]
for obj_idx, obj_output_dict in output_dict_per_obj.items():
obj_slice = slice(obj_idx, obj_idx + 1)
obj_out = {
"maskmem_features": None,
"maskmem_pos_enc": None,
"pred_masks": current_out["pred_masks"][obj_slice],
"obj_ptr": current_out["obj_ptr"][obj_slice],
}
if maskmem_features is not None:
obj_out["maskmem_features"] = maskmem_features[obj_slice]
if maskmem_pos_enc is not None:
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
obj_output_dict[storage_key][frame_idx] = obj_out
@torch.inference_mode()
def reset_state(self, inference_state):
"""Remove all input points or mask in all frames throughout the video."""
self._reset_tracking_results(inference_state)
# Remove all object ids
inference_state["obj_id_to_idx"].clear()
inference_state["obj_idx_to_id"].clear()
inference_state["obj_ids"].clear()
inference_state["point_inputs_per_obj"].clear()
inference_state["mask_inputs_per_obj"].clear()
inference_state["output_dict_per_obj"].clear()
inference_state["temp_output_dict_per_obj"].clear()
def _reset_tracking_results(self, inference_state):
"""Reset all tracking inputs and results across the videos."""
for v in inference_state["point_inputs_per_obj"].values():
v.clear()
for v in inference_state["mask_inputs_per_obj"].values():
v.clear()
for v in inference_state["output_dict_per_obj"].values():
v["cond_frame_outputs"].clear()
v["non_cond_frame_outputs"].clear()
for v in inference_state["temp_output_dict_per_obj"].values():
v["cond_frame_outputs"].clear()
v["non_cond_frame_outputs"].clear()
inference_state["output_dict"]["cond_frame_outputs"].clear()
inference_state["output_dict"]["non_cond_frame_outputs"].clear()
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
inference_state["tracking_has_started"] = False
inference_state["frames_already_tracked"].clear()
def _get_image_feature(self, inference_state, frame_idx, batch_size):
"""Compute the image features on a given frame."""
# Look up in the cache first
image, backbone_out = inference_state["cached_features"].get(
frame_idx, (None, None)
)
if backbone_out is None:
# Cache miss -- we will run inference on a single image
image = inference_state["images"][frame_idx].cuda().float().unsqueeze(0)
backbone_out = self.forward_image(image)
# Cache the most recent frame's feature (for repeated interactions with
# a frame; we can use an LRU cache for more frames in the future).
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
# expand the features to have the same dimension as the number of objects
expanded_image = image.expand(batch_size, -1, -1, -1)
expanded_backbone_out = {
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
}
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
batch_size, -1, -1, -1
)
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
pos = pos.expand(batch_size, -1, -1, -1)
expanded_backbone_out["vision_pos_enc"][i] = pos
features = self._prepare_backbone_features(expanded_backbone_out)
features = (expanded_image,) + features
return features
def _run_single_frame_inference(
self,
inference_state,
output_dict,
frame_idx,
batch_size,
is_init_cond_frame,
point_inputs,
mask_inputs,
reverse,
run_mem_encoder,
prev_sam_mask_logits=None,
):
"""Run tracking on a single frame based on current inputs and previous memory."""
# Retrieve correct image features
(
_,
_,
current_vision_feats,
current_vision_pos_embeds,
feat_sizes,
) = self._get_image_feature(inference_state, frame_idx, batch_size)
# point and mask should not appear as input simultaneously on the same frame
assert point_inputs is None or mask_inputs is None
current_out = self.track_step(
frame_idx=frame_idx,
is_init_cond_frame=is_init_cond_frame,
current_vision_feats=current_vision_feats,
current_vision_pos_embeds=current_vision_pos_embeds,
feat_sizes=feat_sizes,
point_inputs=point_inputs,
mask_inputs=mask_inputs,
output_dict=output_dict,
num_frames=inference_state["num_frames"],
track_in_reverse=reverse,
run_mem_encoder=run_mem_encoder,
prev_sam_mask_logits=prev_sam_mask_logits,
)
# optionally offload the output to CPU memory to save GPU space
storage_device = inference_state["storage_device"]
maskmem_features = current_out["maskmem_features"]
if maskmem_features is not None:
maskmem_features = maskmem_features.to(torch.bfloat16)
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
pred_masks_gpu = current_out["pred_masks"]
# potentially fill holes in the predicted masks
if self.fill_hole_area > 0:
pred_masks_gpu = fill_holes_in_mask_scores(
pred_masks_gpu, self.fill_hole_area
)
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
obj_ptr = current_out["obj_ptr"]
# make a compact version of this frame's output to reduce the state size
compact_current_out = {
"maskmem_features": maskmem_features,
"maskmem_pos_enc": maskmem_pos_enc,
"pred_masks": pred_masks,
"obj_ptr": obj_ptr,
}
return compact_current_out, pred_masks_gpu
def _run_memory_encoder(
self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts
):
"""
Run the memory encoder on `high_res_masks`. This is usually after applying
non-overlapping constraints to object scores. Since their scores changed, their
memory also need to be computed again with the memory encoder.
"""
# Retrieve correct image features
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
inference_state, frame_idx, batch_size
)
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
current_vision_feats=current_vision_feats,
feat_sizes=feat_sizes,
pred_masks_high_res=high_res_masks,
is_mask_from_pts=is_mask_from_pts,
)
# optionally offload the output to CPU memory to save GPU space
storage_device = inference_state["storage_device"]
maskmem_features = maskmem_features.to(torch.bfloat16)
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
maskmem_pos_enc = self._get_maskmem_pos_enc(
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
)
return maskmem_features, maskmem_pos_enc
def _get_maskmem_pos_enc(self, inference_state, current_out):
"""
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
a constant in the inference session to reduce session storage size.
"""
model_constants = inference_state["constants"]
# "out_maskmem_pos_enc" should be either a list of tensors or None
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
if out_maskmem_pos_enc is not None:
if "maskmem_pos_enc" not in model_constants:
assert isinstance(out_maskmem_pos_enc, list)
# only take the slice for one object, since it's same across objects
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
else:
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
# expand the cached maskmem_pos_enc to the actual batch size
batch_size = out_maskmem_pos_enc[0].size(0)
expanded_maskmem_pos_enc = [
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
]
else:
expanded_maskmem_pos_enc = None
return expanded_maskmem_pos_enc
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
"""
Remove the non-conditioning memory around the input frame. When users provide
correction clicks, the surrounding frames' non-conditioning memories can still
contain outdated object appearance information and could confuse the model.
This method clears those non-conditioning memories surrounding the interacted
frame to avoid giving the model both old and new information about the object.
"""
r = self.memory_temporal_stride_for_eval
frame_idx_begin = frame_idx - r * self.num_maskmem
frame_idx_end = frame_idx + r * self.num_maskmem
output_dict = inference_state["output_dict"]
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
for t in range(frame_idx_begin, frame_idx_end + 1):
non_cond_frame_outputs.pop(t, None)
for obj_output_dict in inference_state["output_dict_per_obj"].values():
obj_output_dict["non_cond_frame_outputs"].pop(t, None)