Spaces:
Sleeping
Sleeping
File size: 4,202 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import math
import torch
def diou_loss(
boxes1: torch.Tensor,
boxes2: torch.Tensor,
reduction: str = "none",
eps: float = 1e-7,
) -> torch.Tensor:
"""
Distance Intersection over Union Loss (Zhaohui Zheng et. al)
https://arxiv.org/abs/1911.08287
Args:
boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,).
reduction: 'none' | 'mean' | 'sum'
'none': No reduction will be applied to the output.
'mean': The output will be averaged.
'sum': The output will be summed.
eps (float): small number to prevent division by zero
"""
x1, y1, x2, y2 = boxes1.unbind(dim=-1)
x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)
# TODO: use torch._assert_async() when pytorch 1.8 support is dropped
assert (x2 >= x1).all(), "bad box: x1 larger than x2"
assert (y2 >= y1).all(), "bad box: y1 larger than y2"
# Intersection keypoints
xkis1 = torch.max(x1, x1g)
ykis1 = torch.max(y1, y1g)
xkis2 = torch.min(x2, x2g)
ykis2 = torch.min(y2, y2g)
intsct = torch.zeros_like(x1)
mask = (ykis2 > ykis1) & (xkis2 > xkis1)
intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps
iou = intsct / union
# smallest enclosing box
xc1 = torch.min(x1, x1g)
yc1 = torch.min(y1, y1g)
xc2 = torch.max(x2, x2g)
yc2 = torch.max(y2, y2g)
diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps
# centers of boxes
x_p = (x2 + x1) / 2
y_p = (y2 + y1) / 2
x_g = (x1g + x2g) / 2
y_g = (y1g + y2g) / 2
distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2)
# Eqn. (7)
loss = 1 - iou + (distance / diag_len)
if reduction == "mean":
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
elif reduction == "sum":
loss = loss.sum()
return loss
def ciou_loss(
boxes1: torch.Tensor,
boxes2: torch.Tensor,
reduction: str = "none",
eps: float = 1e-7,
) -> torch.Tensor:
"""
Complete Intersection over Union Loss (Zhaohui Zheng et. al)
https://arxiv.org/abs/1911.08287
Args:
boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,).
reduction: 'none' | 'mean' | 'sum'
'none': No reduction will be applied to the output.
'mean': The output will be averaged.
'sum': The output will be summed.
eps (float): small number to prevent division by zero
"""
x1, y1, x2, y2 = boxes1.unbind(dim=-1)
x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)
# TODO: use torch._assert_async() when pytorch 1.8 support is dropped
assert (x2 >= x1).all(), "bad box: x1 larger than x2"
assert (y2 >= y1).all(), "bad box: y1 larger than y2"
# Intersection keypoints
xkis1 = torch.max(x1, x1g)
ykis1 = torch.max(y1, y1g)
xkis2 = torch.min(x2, x2g)
ykis2 = torch.min(y2, y2g)
intsct = torch.zeros_like(x1)
mask = (ykis2 > ykis1) & (xkis2 > xkis1)
intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps
iou = intsct / union
# smallest enclosing box
xc1 = torch.min(x1, x1g)
yc1 = torch.min(y1, y1g)
xc2 = torch.max(x2, x2g)
yc2 = torch.max(y2, y2g)
diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps
# centers of boxes
x_p = (x2 + x1) / 2
y_p = (y2 + y1) / 2
x_g = (x1g + x2g) / 2
y_g = (y1g + y2g) / 2
distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2)
# width and height of boxes
w_pred = x2 - x1
h_pred = y2 - y1
w_gt = x2g - x1g
h_gt = y2g - y1g
v = (4 / (math.pi**2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
with torch.no_grad():
alpha = v / (1 - iou + v + eps)
# Eqn. (10)
loss = 1 - iou + (distance / diag_len) + alpha * v
if reduction == "mean":
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
elif reduction == "sum":
loss = loss.sum()
return loss
|