Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import csv | |
import logging | |
import numpy as np | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import av | |
import torch | |
from torch.utils.data.dataset import Dataset | |
from detectron2.utils.file_io import PathManager | |
from ..utils import maybe_prepend_base_path | |
from .frame_selector import FrameSelector, FrameTsList | |
FrameList = List[av.frame.Frame] # pyre-ignore[16] | |
FrameTransform = Callable[[torch.Tensor], torch.Tensor] | |
def list_keyframes(video_fpath: str, video_stream_idx: int = 0) -> FrameTsList: | |
""" | |
Traverses all keyframes of a video file. Returns a list of keyframe | |
timestamps. Timestamps are counts in timebase units. | |
Args: | |
video_fpath (str): Video file path | |
video_stream_idx (int): Video stream index (default: 0) | |
Returns: | |
List[int]: list of keyframe timestaps (timestamp is a count in timebase | |
units) | |
""" | |
try: | |
with PathManager.open(video_fpath, "rb") as io: | |
container = av.open(io, mode="r") | |
stream = container.streams.video[video_stream_idx] | |
keyframes = [] | |
pts = -1 | |
# Note: even though we request forward seeks for keyframes, sometimes | |
# a keyframe in backwards direction is returned. We introduce tolerance | |
# as a max count of ignored backward seeks | |
tolerance_backward_seeks = 2 | |
while True: | |
try: | |
container.seek(pts + 1, backward=False, any_frame=False, stream=stream) | |
except av.AVError as e: | |
# the exception occurs when the video length is exceeded, | |
# we then return whatever data we've already collected | |
logger = logging.getLogger(__name__) | |
logger.debug( | |
f"List keyframes: Error seeking video file {video_fpath}, " | |
f"video stream {video_stream_idx}, pts {pts + 1}, AV error: {e}" | |
) | |
return keyframes | |
except OSError as e: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"List keyframes: Error seeking video file {video_fpath}, " | |
f"video stream {video_stream_idx}, pts {pts + 1}, OS error: {e}" | |
) | |
return [] | |
packet = next(container.demux(video=video_stream_idx)) | |
if packet.pts is not None and packet.pts <= pts: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"Video file {video_fpath}, stream {video_stream_idx}: " | |
f"bad seek for packet {pts + 1} (got packet {packet.pts}), " | |
f"tolerance {tolerance_backward_seeks}." | |
) | |
tolerance_backward_seeks -= 1 | |
if tolerance_backward_seeks == 0: | |
return [] | |
pts += 1 | |
continue | |
tolerance_backward_seeks = 2 | |
pts = packet.pts | |
if pts is None: | |
return keyframes | |
if packet.is_keyframe: | |
keyframes.append(pts) | |
return keyframes | |
except OSError as e: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"List keyframes: Error opening video file container {video_fpath}, " f"OS error: {e}" | |
) | |
except RuntimeError as e: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"List keyframes: Error opening video file container {video_fpath}, " | |
f"Runtime error: {e}" | |
) | |
return [] | |
def read_keyframes( | |
video_fpath: str, keyframes: FrameTsList, video_stream_idx: int = 0 | |
) -> FrameList: # pyre-ignore[11] | |
""" | |
Reads keyframe data from a video file. | |
Args: | |
video_fpath (str): Video file path | |
keyframes (List[int]): List of keyframe timestamps (as counts in | |
timebase units to be used in container seek operations) | |
video_stream_idx (int): Video stream index (default: 0) | |
Returns: | |
List[Frame]: list of frames that correspond to the specified timestamps | |
""" | |
try: | |
with PathManager.open(video_fpath, "rb") as io: | |
container = av.open(io) | |
stream = container.streams.video[video_stream_idx] | |
frames = [] | |
for pts in keyframes: | |
try: | |
container.seek(pts, any_frame=False, stream=stream) | |
frame = next(container.decode(video=0)) | |
frames.append(frame) | |
except av.AVError as e: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"Read keyframes: Error seeking video file {video_fpath}, " | |
f"video stream {video_stream_idx}, pts {pts}, AV error: {e}" | |
) | |
container.close() | |
return frames | |
except OSError as e: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"Read keyframes: Error seeking video file {video_fpath}, " | |
f"video stream {video_stream_idx}, pts {pts}, OS error: {e}" | |
) | |
container.close() | |
return frames | |
except StopIteration: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"Read keyframes: Error decoding frame from {video_fpath}, " | |
f"video stream {video_stream_idx}, pts {pts}" | |
) | |
container.close() | |
return frames | |
container.close() | |
return frames | |
except OSError as e: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"Read keyframes: Error opening video file container {video_fpath}, OS error: {e}" | |
) | |
except RuntimeError as e: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
f"Read keyframes: Error opening video file container {video_fpath}, Runtime error: {e}" | |
) | |
return [] | |
def video_list_from_file(video_list_fpath: str, base_path: Optional[str] = None): | |
""" | |
Create a list of paths to video files from a text file. | |
Args: | |
video_list_fpath (str): path to a plain text file with the list of videos | |
base_path (str): base path for entries from the video list (default: None) | |
""" | |
video_list = [] | |
with PathManager.open(video_list_fpath, "r") as io: | |
for line in io: | |
video_list.append(maybe_prepend_base_path(base_path, str(line.strip()))) | |
return video_list | |
def read_keyframe_helper_data(fpath: str): | |
""" | |
Read keyframe data from a file in CSV format: the header should contain | |
"video_id" and "keyframes" fields. Value specifications are: | |
video_id: int | |
keyframes: list(int) | |
Example of contents: | |
video_id,keyframes | |
2,"[1,11,21,31,41,51,61,71,81]" | |
Args: | |
fpath (str): File containing keyframe data | |
Return: | |
video_id_to_keyframes (dict: int -> list(int)): for a given video ID it | |
contains a list of keyframes for that video | |
""" | |
video_id_to_keyframes = {} | |
try: | |
with PathManager.open(fpath, "r") as io: | |
csv_reader = csv.reader(io) | |
header = next(csv_reader) | |
video_id_idx = header.index("video_id") | |
keyframes_idx = header.index("keyframes") | |
for row in csv_reader: | |
video_id = int(row[video_id_idx]) | |
assert ( | |
video_id not in video_id_to_keyframes | |
), f"Duplicate keyframes entry for video {fpath}" | |
video_id_to_keyframes[video_id] = ( | |
[int(v) for v in row[keyframes_idx][1:-1].split(",")] | |
if len(row[keyframes_idx]) > 2 | |
else [] | |
) | |
except Exception as e: | |
logger = logging.getLogger(__name__) | |
logger.warning(f"Error reading keyframe helper data from {fpath}: {e}") | |
return video_id_to_keyframes | |
class VideoKeyframeDataset(Dataset): | |
""" | |
Dataset that provides keyframes for a set of videos. | |
""" | |
_EMPTY_FRAMES = torch.empty((0, 3, 1, 1)) | |
def __init__( | |
self, | |
video_list: List[str], | |
category_list: Union[str, List[str], None] = None, | |
frame_selector: Optional[FrameSelector] = None, | |
transform: Optional[FrameTransform] = None, | |
keyframe_helper_fpath: Optional[str] = None, | |
): | |
""" | |
Dataset constructor | |
Args: | |
video_list (List[str]): list of paths to video files | |
category_list (Union[str, List[str], None]): list of animal categories for each | |
video file. If it is a string, or None, this applies to all videos | |
frame_selector (Callable: KeyFrameList -> KeyFrameList): | |
selects keyframes to process, keyframes are given by | |
packet timestamps in timebase counts. If None, all keyframes | |
are selected (default: None) | |
transform (Callable: torch.Tensor -> torch.Tensor): | |
transforms a batch of RGB images (tensors of size [B, 3, H, W]), | |
returns a tensor of the same size. If None, no transform is | |
applied (default: None) | |
""" | |
if type(category_list) == list: | |
self.category_list = category_list | |
else: | |
self.category_list = [category_list] * len(video_list) | |
assert len(video_list) == len( | |
self.category_list | |
), "length of video and category lists must be equal" | |
self.video_list = video_list | |
self.frame_selector = frame_selector | |
self.transform = transform | |
self.keyframe_helper_data = ( | |
read_keyframe_helper_data(keyframe_helper_fpath) | |
if keyframe_helper_fpath is not None | |
else None | |
) | |
def __getitem__(self, idx: int) -> Dict[str, Any]: | |
""" | |
Gets selected keyframes from a given video | |
Args: | |
idx (int): video index in the video list file | |
Returns: | |
A dictionary containing two keys: | |
images (torch.Tensor): tensor of size [N, H, W, 3] or of size | |
defined by the transform that contains keyframes data | |
categories (List[str]): categories of the frames | |
""" | |
categories = [self.category_list[idx]] | |
fpath = self.video_list[idx] | |
keyframes = ( | |
list_keyframes(fpath) | |
if self.keyframe_helper_data is None or idx not in self.keyframe_helper_data | |
else self.keyframe_helper_data[idx] | |
) | |
transform = self.transform | |
frame_selector = self.frame_selector | |
if not keyframes: | |
return {"images": self._EMPTY_FRAMES, "categories": []} | |
if frame_selector is not None: | |
keyframes = frame_selector(keyframes) | |
frames = read_keyframes(fpath, keyframes) | |
if not frames: | |
return {"images": self._EMPTY_FRAMES, "categories": []} | |
frames = np.stack([frame.to_rgb().to_ndarray() for frame in frames]) | |
frames = torch.as_tensor(frames, device=torch.device("cpu")) | |
frames = frames[..., [2, 1, 0]] # RGB -> BGR | |
frames = frames.permute(0, 3, 1, 2).float() # NHWC -> NCHW | |
if transform is not None: | |
frames = transform(frames) | |
return {"images": frames, "categories": categories} | |
def __len__(self): | |
return len(self.video_list) | |