Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import numpy as np | |
from typing import Iterable, Optional, Tuple | |
import cv2 | |
from densepose.structures import DensePoseDataRelative | |
from .base import Boxes, Image, MatrixVisualizer, PointsVisualizer | |
class DensePoseDataCoarseSegmentationVisualizer: | |
""" | |
Visualizer for ground truth segmentation | |
""" | |
def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs): | |
self.mask_visualizer = MatrixVisualizer( | |
inplace=inplace, | |
cmap=cmap, | |
val_scale=255.0 / DensePoseDataRelative.N_BODY_PARTS, | |
alpha=alpha, | |
) | |
def visualize( | |
self, | |
image_bgr: Image, | |
bbox_densepose_datas: Optional[Tuple[Iterable[Boxes], Iterable[DensePoseDataRelative]]], | |
) -> Image: | |
if bbox_densepose_datas is None: | |
return image_bgr | |
for bbox_xywh, densepose_data in zip(*bbox_densepose_datas): | |
matrix = densepose_data.segm.numpy() | |
mask = np.zeros(matrix.shape, dtype=np.uint8) | |
mask[matrix > 0] = 1 | |
image_bgr = self.mask_visualizer.visualize(image_bgr, mask, matrix, bbox_xywh.numpy()) | |
return image_bgr | |
class DensePoseDataPointsVisualizer: | |
def __init__(self, densepose_data_to_value_fn=None, cmap=cv2.COLORMAP_PARULA, **kwargs): | |
self.points_visualizer = PointsVisualizer() | |
self.densepose_data_to_value_fn = densepose_data_to_value_fn | |
self.cmap = cmap | |
def visualize( | |
self, | |
image_bgr: Image, | |
bbox_densepose_datas: Optional[Tuple[Iterable[Boxes], Iterable[DensePoseDataRelative]]], | |
) -> Image: | |
if bbox_densepose_datas is None: | |
return image_bgr | |
for bbox_xywh, densepose_data in zip(*bbox_densepose_datas): | |
x0, y0, w, h = bbox_xywh.numpy() | |
x = densepose_data.x.numpy() * w / 255.0 + x0 | |
y = densepose_data.y.numpy() * h / 255.0 + y0 | |
pts_xy = zip(x, y) | |
if self.densepose_data_to_value_fn is None: | |
image_bgr = self.points_visualizer.visualize(image_bgr, pts_xy) | |
else: | |
v = self.densepose_data_to_value_fn(densepose_data) | |
img_colors_bgr = cv2.applyColorMap(v, self.cmap) | |
colors_bgr = [ | |
[int(v) for v in img_color_bgr.ravel()] for img_color_bgr in img_colors_bgr | |
] | |
image_bgr = self.points_visualizer.visualize(image_bgr, pts_xy, colors_bgr) | |
return image_bgr | |
def _densepose_data_u_for_cmap(densepose_data): | |
u = np.clip(densepose_data.u.numpy(), 0, 1) * 255.0 | |
return u.astype(np.uint8) | |
def _densepose_data_v_for_cmap(densepose_data): | |
v = np.clip(densepose_data.v.numpy(), 0, 1) * 255.0 | |
return v.astype(np.uint8) | |
def _densepose_data_i_for_cmap(densepose_data): | |
i = ( | |
np.clip(densepose_data.i.numpy(), 0.0, DensePoseDataRelative.N_PART_LABELS) | |
* 255.0 | |
/ DensePoseDataRelative.N_PART_LABELS | |
) | |
return i.astype(np.uint8) | |
class DensePoseDataPointsUVisualizer(DensePoseDataPointsVisualizer): | |
def __init__(self, **kwargs): | |
super(DensePoseDataPointsUVisualizer, self).__init__( | |
densepose_data_to_value_fn=_densepose_data_u_for_cmap, **kwargs | |
) | |
class DensePoseDataPointsVVisualizer(DensePoseDataPointsVisualizer): | |
def __init__(self, **kwargs): | |
super(DensePoseDataPointsVVisualizer, self).__init__( | |
densepose_data_to_value_fn=_densepose_data_v_for_cmap, **kwargs | |
) | |
class DensePoseDataPointsIVisualizer(DensePoseDataPointsVisualizer): | |
def __init__(self, **kwargs): | |
super(DensePoseDataPointsIVisualizer, self).__init__( | |
densepose_data_to_value_fn=_densepose_data_i_for_cmap, **kwargs | |
) | |