Spaces:
Sleeping
Sleeping
parokshsaxena
commited on
Commit
β’
0c774a3
1
Parent(s):
fbd5743
removing naize harmonization, adding functions for creating masks
Browse files- app.py +3 -2
- src/background_processor.py +57 -0
app.py
CHANGED
@@ -185,9 +185,10 @@ def start_tryon(human_img_dict,garm_img,garment_des, background_img, is_checked,
|
|
185 |
else:
|
186 |
human_img = human_img_orig.resize((WIDTH, HEIGHT))
|
187 |
|
|
|
188 |
# Do color transfer from background image for better image harmonization
|
189 |
-
if background_img:
|
190 |
-
|
191 |
|
192 |
|
193 |
if is_checked:
|
|
|
185 |
else:
|
186 |
human_img = human_img_orig.resize((WIDTH, HEIGHT))
|
187 |
|
188 |
+
# Commenting out naize harmonization for now. We will have to integrate with Deep Learning based Harmonization methods
|
189 |
# Do color transfer from background image for better image harmonization
|
190 |
+
#if background_img:
|
191 |
+
# human_img = BackgroundProcessor.intensity_transfer(human_img, background_img)
|
192 |
|
193 |
|
194 |
if is_checked:
|
src/background_processor.py
CHANGED
@@ -232,6 +232,63 @@ class BackgroundProcessor:
|
|
232 |
logging.error(f"failed to use remove bg. Status: {remove_bg_request.status_code}. Resp: {remove_bg_request.content}")
|
233 |
return None
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
@classmethod
|
237 |
def color_transfer(cls, source_pil: Image, target_pil: Image) -> Image:
|
|
|
232 |
logging.error(f"failed to use remove bg. Status: {remove_bg_request.status_code}. Resp: {remove_bg_request.content}")
|
233 |
return None
|
234 |
|
235 |
+
@classmethod
|
236 |
+
def create_mask(cls, foreground_path: str, mask_path: str):
|
237 |
+
"""
|
238 |
+
Given foreground image path with background removed, create a maska and save it in mask_path
|
239 |
+
"""
|
240 |
+
# Load the foreground image with alpha channel
|
241 |
+
foreground = Image.open(foreground_path)
|
242 |
+
|
243 |
+
# Convert to RGBA if not already
|
244 |
+
foreground = foreground.convert("RGBA")
|
245 |
+
|
246 |
+
# Create the mask from the alpha channel
|
247 |
+
alpha_channel = np.array(foreground.split()[-1])
|
248 |
+
|
249 |
+
# Create a binary mask where alpha > 0 is white (255) and alpha == 0 is black (0)
|
250 |
+
mask = np.where(alpha_channel > 0, 255, 0).astype(np.uint8)
|
251 |
+
|
252 |
+
# Save the mask to a file
|
253 |
+
Image.fromarray(mask).save(mask_path)
|
254 |
+
|
255 |
+
@classmethod
|
256 |
+
def get_minimal_bounding_box(cls, foreground_pil: Image):
|
257 |
+
"""
|
258 |
+
Result x1,y1,x2,y2 ie cordinate of bottom left and top right
|
259 |
+
"""
|
260 |
+
# convert to cv2
|
261 |
+
foreground = ImageFormatConvertor.pil_to_cv2(foreground_pil)
|
262 |
+
# Ensure the image has an alpha channel (transparency)
|
263 |
+
if foreground.shape[2] == 4:
|
264 |
+
# Extract the alpha channel
|
265 |
+
alpha_channel = foreground[:, :, 3]
|
266 |
+
# Create a binary image from the alpha channel
|
267 |
+
_, binary_image = cv2.threshold(alpha_channel, 1, 255, cv2.THRESH_BINARY)
|
268 |
+
else:
|
269 |
+
# If there is no alpha channel, convert the image to grayscale
|
270 |
+
gray_image = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY)
|
271 |
+
# Apply binary thresholding
|
272 |
+
_, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY)
|
273 |
+
|
274 |
+
# Find all non-zero points (non-background)
|
275 |
+
non_zero_points = cv2.findNonZero(binary_image)
|
276 |
+
|
277 |
+
# Get the minimal bounding rectangle
|
278 |
+
if non_zero_points is not None:
|
279 |
+
x, y, w, h = cv2.boundingRect(non_zero_points)
|
280 |
+
"""
|
281 |
+
# Optionally, draw the bounding box on the image for visualization
|
282 |
+
output_image = foreground.copy()
|
283 |
+
cv2.rectangle(output_image, (x, y), (x+w, y+h), (0, 255, 0, 255), 2)
|
284 |
+
# Save or display the output image
|
285 |
+
output_image_pil = ImageFormatConvertor.cv2_to_pil(output_image)
|
286 |
+
output_image_pil.save('output_with_bounding_box.png')
|
287 |
+
"""
|
288 |
+
|
289 |
+
return (x, y, x + w, y + h)
|
290 |
+
else:
|
291 |
+
return 0,0,w,h
|
292 |
|
293 |
@classmethod
|
294 |
def color_transfer(cls, source_pil: Image, target_pil: Image) -> Image:
|