Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,386 +1,12 @@
|
|
1 |
-
import spaces
|
2 |
-
import logging
|
3 |
-
import math
|
4 |
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
-
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
7 |
-
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
8 |
-
from src.unet_hacked_tryon import UNet2DConditionModel
|
9 |
-
from transformers import (
|
10 |
-
CLIPImageProcessor,
|
11 |
-
CLIPVisionModelWithProjection,
|
12 |
-
CLIPTextModel,
|
13 |
-
CLIPTextModelWithProjection,
|
14 |
-
)
|
15 |
-
from diffusers import DDPMScheduler,AutoencoderKL
|
16 |
-
from typing import List
|
17 |
-
|
18 |
-
import torch
|
19 |
-
import os
|
20 |
-
from transformers import AutoTokenizer
|
21 |
-
import numpy as np
|
22 |
-
from utils_mask import get_mask_location
|
23 |
-
from torchvision import transforms
|
24 |
-
import apply_net
|
25 |
-
from preprocess.humanparsing.run_parsing import Parsing
|
26 |
-
from preprocess.openpose.run_openpose import OpenPose
|
27 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
28 |
-
from torchvision.transforms.functional import to_pil_image
|
29 |
-
from src.background_processor import BackgroundProcessor
|
30 |
-
|
31 |
-
def pil_to_binary_mask(pil_image, threshold=0):
|
32 |
-
np_image = np.array(pil_image)
|
33 |
-
grayscale_image = Image.fromarray(np_image).convert("L")
|
34 |
-
binary_mask = np.array(grayscale_image) > threshold
|
35 |
-
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
36 |
-
for i in range(binary_mask.shape[0]):
|
37 |
-
for j in range(binary_mask.shape[1]):
|
38 |
-
if binary_mask[i,j] == True :
|
39 |
-
mask[i,j] = 1
|
40 |
-
mask = (mask*255).astype(np.uint8)
|
41 |
-
output_mask = Image.fromarray(mask)
|
42 |
-
return output_mask
|
43 |
-
|
44 |
-
|
45 |
-
base_path = 'yisol/IDM-VTON'
|
46 |
-
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
47 |
-
|
48 |
-
unet = UNet2DConditionModel.from_pretrained(
|
49 |
-
base_path,
|
50 |
-
subfolder="unet",
|
51 |
-
torch_dtype=torch.float16,
|
52 |
-
)
|
53 |
-
unet.requires_grad_(False)
|
54 |
-
tokenizer_one = AutoTokenizer.from_pretrained(
|
55 |
-
base_path,
|
56 |
-
subfolder="tokenizer",
|
57 |
-
revision=None,
|
58 |
-
use_fast=False,
|
59 |
-
)
|
60 |
-
tokenizer_two = AutoTokenizer.from_pretrained(
|
61 |
-
base_path,
|
62 |
-
subfolder="tokenizer_2",
|
63 |
-
revision=None,
|
64 |
-
use_fast=False,
|
65 |
-
)
|
66 |
-
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
67 |
-
|
68 |
-
text_encoder_one = CLIPTextModel.from_pretrained(
|
69 |
-
base_path,
|
70 |
-
subfolder="text_encoder",
|
71 |
-
torch_dtype=torch.float16,
|
72 |
-
)
|
73 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
74 |
-
base_path,
|
75 |
-
subfolder="text_encoder_2",
|
76 |
-
torch_dtype=torch.float16,
|
77 |
-
)
|
78 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
79 |
-
base_path,
|
80 |
-
subfolder="image_encoder",
|
81 |
-
torch_dtype=torch.float16,
|
82 |
-
)
|
83 |
-
vae = AutoencoderKL.from_pretrained(base_path,
|
84 |
-
subfolder="vae",
|
85 |
-
torch_dtype=torch.float16,
|
86 |
-
)
|
87 |
-
|
88 |
-
# "stabilityai/stable-diffusion-xl-base-1.0",
|
89 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
90 |
-
base_path,
|
91 |
-
subfolder="unet_encoder",
|
92 |
-
torch_dtype=torch.float16,
|
93 |
-
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
text_encoder_one.requires_grad_(False)
|
103 |
-
text_encoder_two.requires_grad_(False)
|
104 |
-
tensor_transfrom = transforms.Compose(
|
105 |
-
[
|
106 |
-
transforms.ToTensor(),
|
107 |
-
transforms.Normalize([0.5], [0.5]),
|
108 |
-
]
|
109 |
-
)
|
110 |
-
|
111 |
-
pipe = TryonPipeline.from_pretrained(
|
112 |
-
base_path,
|
113 |
-
unet=unet,
|
114 |
-
vae=vae,
|
115 |
-
feature_extractor= CLIPImageProcessor(),
|
116 |
-
text_encoder = text_encoder_one,
|
117 |
-
text_encoder_2 = text_encoder_two,
|
118 |
-
tokenizer = tokenizer_one,
|
119 |
-
tokenizer_2 = tokenizer_two,
|
120 |
-
scheduler = noise_scheduler,
|
121 |
-
image_encoder=image_encoder,
|
122 |
-
torch_dtype=torch.float16,
|
123 |
)
|
124 |
-
pipe.unet_encoder = UNet_Encoder
|
125 |
-
|
126 |
-
# Standard size of shein images
|
127 |
-
#WIDTH = int(4160/5)
|
128 |
-
#HEIGHT = int(6240/5)
|
129 |
-
# Standard size on which model is trained
|
130 |
-
WIDTH = int(768)
|
131 |
-
HEIGHT = int(1024)
|
132 |
-
POSE_WIDTH = int(WIDTH/2) # int(WIDTH/2)
|
133 |
-
POSE_HEIGHT = int(HEIGHT/2) #int(HEIGHT/2)
|
134 |
-
ARM_WIDTH = "dc" # "hd" # hd -> full sleeve, dc for half sleeve
|
135 |
-
CATEGORY = "upper_body" # "lower_body"
|
136 |
-
|
137 |
-
|
138 |
-
def is_cropping_required(width, height):
|
139 |
-
# If aspect ratio is 1.33, which is same as standard 3x4 ( 768x1024 ), then no need to crop, else crop
|
140 |
-
aspect_ratio = round(height/width, 2)
|
141 |
-
if aspect_ratio == 1.33:
|
142 |
-
return False
|
143 |
-
return True
|
144 |
-
|
145 |
-
|
146 |
-
@spaces.GPU
|
147 |
-
def start_tryon(human_img_dict,garm_img,garment_des, background_img, is_checked,is_checked_crop,denoise_steps,seed):
|
148 |
-
logging.info("Starting try on")
|
149 |
-
#device = "cuda"
|
150 |
-
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
151 |
-
|
152 |
-
openpose_model.preprocessor.body_estimation.model.to(device)
|
153 |
-
pipe.to(device)
|
154 |
-
pipe.unet_encoder.to(device)
|
155 |
-
|
156 |
-
human_img_orig = human_img_dict["background"].convert("RGB") # ImageEditor
|
157 |
-
#human_img_orig = human_img_dict.convert("RGB") # Image
|
158 |
-
|
159 |
-
|
160 |
-
"""
|
161 |
-
# Derive HEIGHT & WIDTH such that width is not more than 1000. This will cater to both Shein images (4160x6240) of 2:3 AR and model standard images ( 768x1024 ) of 3:4 AR
|
162 |
-
WIDTH, HEIGHT = human_img_orig.size
|
163 |
-
division_factor = math.ceil(WIDTH/1000)
|
164 |
-
WIDTH = int(WIDTH/division_factor)
|
165 |
-
HEIGHT = int(HEIGHT/division_factor)
|
166 |
-
POSE_WIDTH = int(WIDTH/2)
|
167 |
-
POSE_HEIGHT = int(HEIGHT/2)
|
168 |
-
"""
|
169 |
-
# is_checked_crop as True if original AR is not same as 2x3 as expected by model
|
170 |
-
w, h = human_img_orig.size
|
171 |
-
is_checked_crop = is_cropping_required(w, h)
|
172 |
-
|
173 |
-
garm_img= garm_img.convert("RGB").resize((WIDTH,HEIGHT))
|
174 |
-
if is_checked_crop:
|
175 |
-
# This will crop the image to make it Aspect Ratio of 3 x 4. And then at the end revert it back to original dimentions
|
176 |
-
width, height = human_img_orig.size
|
177 |
-
target_width = int(min(width, height * (3 / 4)))
|
178 |
-
target_height = int(min(height, width * (4 / 3)))
|
179 |
-
|
180 |
-
left = (width - target_width) / 2
|
181 |
-
right = (width + target_width) / 2
|
182 |
-
# for Landmark, model sizes are 594x879, so we need to reduce the height. In some case the garment on the model is
|
183 |
-
# also getting removed when reducing size from bottom. So we will only reduce height from top for now
|
184 |
-
top = (height - target_height) #top = (height - target_height) / 2
|
185 |
-
bottom = height #bottom = (height + target_height) / 2
|
186 |
-
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
187 |
-
|
188 |
-
crop_size = cropped_img.size
|
189 |
-
human_img = cropped_img.resize((WIDTH, HEIGHT))
|
190 |
-
else:
|
191 |
-
human_img = human_img_orig.resize((WIDTH, HEIGHT))
|
192 |
-
|
193 |
-
# Commenting out naize harmonization for now. We will have to integrate with Deep Learning based Harmonization methods
|
194 |
-
# Do color transfer from background image for better image harmonization
|
195 |
-
#if background_img:
|
196 |
-
# human_img = BackgroundProcessor.intensity_transfer(human_img, background_img)
|
197 |
-
|
198 |
-
|
199 |
-
if is_checked:
|
200 |
-
# internally openpose_model is resizing human_img to resolution 384 if not passed as input
|
201 |
-
keypoints = openpose_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
|
202 |
-
model_parse, _ = parsing_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
|
203 |
-
# internally get mask location function is resizing model_parse to 384x512 if width & height not passed
|
204 |
-
mask, mask_gray = get_mask_location(ARM_WIDTH, CATEGORY, model_parse, keypoints)
|
205 |
-
mask = mask.resize((WIDTH, HEIGHT))
|
206 |
-
logging.info("Mask location on model identified")
|
207 |
-
else:
|
208 |
-
mask = pil_to_binary_mask(human_img_dict['layers'][0].convert("RGB").resize((WIDTH, HEIGHT)))
|
209 |
-
# mask = transforms.ToTensor()(mask)
|
210 |
-
# mask = mask.unsqueeze(0)
|
211 |
-
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
212 |
-
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
213 |
-
|
214 |
-
|
215 |
-
human_img_arg = _apply_exif_orientation(human_img.resize((POSE_WIDTH,POSE_HEIGHT)))
|
216 |
-
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', device))
|
221 |
-
# verbosity = getattr(args, "verbosity", None)
|
222 |
-
pose_img = args.func(args,human_img_arg)
|
223 |
-
pose_img = pose_img[:,:,::-1]
|
224 |
-
pose_img = Image.fromarray(pose_img).resize((WIDTH,HEIGHT))
|
225 |
-
|
226 |
-
with torch.no_grad():
|
227 |
-
# Extract the images
|
228 |
-
with torch.cuda.amp.autocast():
|
229 |
-
with torch.no_grad():
|
230 |
-
prompt = "model is wearing " + garment_des
|
231 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
232 |
-
with torch.inference_mode():
|
233 |
-
(
|
234 |
-
prompt_embeds,
|
235 |
-
negative_prompt_embeds,
|
236 |
-
pooled_prompt_embeds,
|
237 |
-
negative_pooled_prompt_embeds,
|
238 |
-
) = pipe.encode_prompt(
|
239 |
-
prompt,
|
240 |
-
num_images_per_prompt=1,
|
241 |
-
do_classifier_free_guidance=True,
|
242 |
-
negative_prompt=negative_prompt,
|
243 |
-
)
|
244 |
-
|
245 |
-
prompt = "a photo of " + garment_des
|
246 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
247 |
-
if not isinstance(prompt, List):
|
248 |
-
prompt = [prompt] * 1
|
249 |
-
if not isinstance(negative_prompt, List):
|
250 |
-
negative_prompt = [negative_prompt] * 1
|
251 |
-
with torch.inference_mode():
|
252 |
-
(
|
253 |
-
prompt_embeds_c,
|
254 |
-
_,
|
255 |
-
_,
|
256 |
-
_,
|
257 |
-
) = pipe.encode_prompt(
|
258 |
-
prompt,
|
259 |
-
num_images_per_prompt=1,
|
260 |
-
do_classifier_free_guidance=False,
|
261 |
-
negative_prompt=negative_prompt,
|
262 |
-
)
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
267 |
-
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
268 |
-
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
269 |
-
images = pipe(
|
270 |
-
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
271 |
-
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
272 |
-
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
273 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
|
274 |
-
num_inference_steps=denoise_steps,
|
275 |
-
generator=generator,
|
276 |
-
strength = 1.0,
|
277 |
-
pose_img = pose_img.to(device,torch.float16),
|
278 |
-
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
|
279 |
-
cloth = garm_tensor.to(device,torch.float16),
|
280 |
-
mask_image=mask,
|
281 |
-
image=human_img,
|
282 |
-
height=HEIGHT,
|
283 |
-
width=WIDTH,
|
284 |
-
ip_adapter_image = garm_img.resize((WIDTH,HEIGHT)),
|
285 |
-
guidance_scale=2.0,
|
286 |
-
)[0]
|
287 |
-
|
288 |
-
if is_checked_crop:
|
289 |
-
out_img = images[0].resize(crop_size)
|
290 |
-
human_img_orig.paste(out_img, (int(left), int(top)))
|
291 |
-
final_image = human_img_orig
|
292 |
-
# return human_img_orig, mask_gray
|
293 |
-
else:
|
294 |
-
final_image = images[0]
|
295 |
-
# return images[0], mask_gray
|
296 |
-
|
297 |
-
# apply background to final image
|
298 |
-
if background_img:
|
299 |
-
logging.info("Adding background")
|
300 |
-
final_image = BackgroundProcessor.replace_background_with_removebg(final_image, background_img)
|
301 |
-
return final_image, mask_gray
|
302 |
-
# return images[0], mask_gray
|
303 |
-
|
304 |
-
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
305 |
-
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
306 |
-
|
307 |
-
human_list = os.listdir(os.path.join(example_path,"human"))
|
308 |
-
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
309 |
-
|
310 |
-
human_ex_list = []
|
311 |
-
#human_ex_list = human_list_path # Image
|
312 |
-
#""" if using ImageEditor instead of Image while taking input, use this - ImageEditor
|
313 |
-
for ex_human in human_list_path:
|
314 |
-
ex_dict= {}
|
315 |
-
ex_dict['background'] = ex_human
|
316 |
-
ex_dict['layers'] = None
|
317 |
-
ex_dict['composite'] = None
|
318 |
-
human_ex_list.append(ex_dict)
|
319 |
-
#"""
|
320 |
-
##default human
|
321 |
-
|
322 |
-
|
323 |
-
# api_open=True will allow this API to be hit using curl
|
324 |
-
image_blocks = gr.Blocks().queue(api_open=True)
|
325 |
-
with image_blocks as demo:
|
326 |
-
gr.Markdown("## Virtual Try-On πππ")
|
327 |
-
gr.Markdown("Upload an image of a person and an image of a garment β¨.")
|
328 |
-
with gr.Row():
|
329 |
-
with gr.Column():
|
330 |
-
# changing from ImageEditor to Image to allow easy passing of data through API
|
331 |
-
# instead of passing {"dictionary": <>} ( which is failing ), we can directly pass the image
|
332 |
-
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
333 |
-
#imgs = gr.Image(sources='upload', type='pil',label='Human. Mask with pen or use auto-masking')
|
334 |
-
with gr.Row():
|
335 |
-
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
336 |
-
with gr.Row():
|
337 |
-
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
|
338 |
-
|
339 |
-
example = gr.Examples(
|
340 |
-
inputs=imgs,
|
341 |
-
examples_per_page=10,
|
342 |
-
examples=human_ex_list
|
343 |
-
)
|
344 |
-
|
345 |
-
with gr.Column():
|
346 |
-
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
347 |
-
with gr.Row(elem_id="prompt-container"):
|
348 |
-
with gr.Row():
|
349 |
-
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
|
350 |
-
example = gr.Examples(
|
351 |
-
inputs=garm_img,
|
352 |
-
examples_per_page=8,
|
353 |
-
examples=garm_list_path)
|
354 |
-
|
355 |
-
with gr.Column():
|
356 |
-
background_img = gr.Image(label="Background", sources='upload', type="pil")
|
357 |
-
|
358 |
-
with gr.Column():
|
359 |
-
with gr.Row():
|
360 |
-
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
|
361 |
-
with gr.Row():
|
362 |
-
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
|
363 |
-
"""
|
364 |
-
with gr.Column():
|
365 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
366 |
-
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
|
367 |
-
with gr.Column():
|
368 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
369 |
-
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
|
370 |
-
"""
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
with gr.Column():
|
375 |
-
try_button = gr.Button(value="Try-on")
|
376 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
377 |
-
with gr.Row():
|
378 |
-
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
379 |
-
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, background_img, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
|
384 |
|
385 |
-
|
386 |
-
image_blocks.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def greet(name, intensity):
|
4 |
+
return "Hello, " + name + "!" * int(intensity)
|
5 |
|
6 |
+
demo = gr.Interface(
|
7 |
+
fn=greet,
|
8 |
+
inputs=["text", "slider"],
|
9 |
+
outputs=["text"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
demo.launch()
|
|