File size: 6,547 Bytes
7e98abb
 
 
 
 
 
 
56451ad
7e98abb
 
 
 
 
 
 
1c41f75
7e98abb
 
 
 
 
 
 
56451ad
7e98abb
 
56451ad
7e98abb
 
 
7811032
 
56451ad
 
7e98abb
 
 
56451ad
7e98abb
 
 
 
 
56451ad
 
7e98abb
 
 
 
 
 
 
56451ad
7e98abb
 
 
 
 
 
 
 
 
 
56451ad
7e98abb
 
 
 
 
56451ad
7e98abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56451ad
 
7811032
 
56451ad
 
 
 
 
 
 
7811032
56451ad
7811032
 
56451ad
 
 
7e98abb
 
 
 
1c41f75
 
 
 
 
 
 
 
 
 
 
 
7e98abb
56451ad
7e98abb
 
 
 
56451ad
 
 
7e98abb
 
 
 
 
 
 
 
 
56451ad
7e98abb
56451ad
7e98abb
56451ad
7e98abb
 
 
56451ad
7e98abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass(frozen=True)
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False


## Leaderboard columns
auto_eval_column_dict = []

# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["training_codebase", ColumnContent, ColumnContent("Code", "str", True, False)])
auto_eval_column_dict.append(["training_data", ColumnContent, ColumnContent("Data", "str", True, False)])

# Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])

# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟒")
    FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
    IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return ModelType.FT
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "β­•" in type:
            return ModelType.IFT
        return ModelType.Unknown


class DisclosedType(Enum):
    D = ModelDetails(name="disclosed", symbol="πŸ‘")
    UD = ModelDetails(name="undisclosed", symbol="πŸ™ˆ")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "undisclosed" in type:
            return DisclosedType.UD
        if "disclosed" in type:
            return DisclosedType.D
        return DisclosedType.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")
    Unknown = ModelDetails("Unknown")

    @staticmethod
    def from_str(type):
        if type == "adapter":
            return WeightType.Adapter
        elif type == "original":
            return WeightType.Original
        elif type == "delta":
            return WeightType.Delta
        else:
            return WeightType.Unknown


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    float32 = ModelDetails("float32")
    # qt_8bit = ModelDetails("8bit")
    # qt_4bit = ModelDetails("4bit")
    # qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["float32"]:
            return Precision.float32
        # if precision in ["8bit"]:
        #    return Precision.qt_8bit
        # if precision in ["4bit"]:
        #    return Precision.qt_4bit
        # if precision in ["GPTQ", "None"]:
        #    return Precision.qt_GPTQ
        return Precision.Unknown


# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}