File size: 9,646 Bytes
7e98abb 56451ad 7e98abb e3d6a90 7e98abb b901e2a 7e98abb b901e2a 7e98abb b901e2a 7e98abb b901e2a 7e98abb b901e2a 7e98abb b901e2a 56451ad 1c41f75 56451ad b901e2a 7e98abb 1c41f75 7e98abb e3d6a90 7e98abb 56451ad 7e98abb 56451ad 61e7dfb 7e98abb e3d6a90 7e98abb b901e2a 7e98abb b901e2a 7e98abb b901e2a 7e98abb 61e7dfb 7e98abb 61e7dfb 7e98abb 56451ad 7e98abb 56451ad 7e98abb b901e2a 7e98abb 1c41f75 7e98abb e3d6a90 7e98abb e3d6a90 7e98abb b901e2a e3d6a90 7e98abb e3d6a90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, DisclosedType
from src.submission.check_validity import is_model_on_hub
import pdb
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
base_model: str = None
training_codebase: str = None
training_data: str = None
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
additional_info = {
"license": config.get("license", None),
"num_params": config.get("params", None),
"base_model": config.get("base_model", None),
"model_type": ModelType.from_str(config.get("model_type", "")),
"weight_type": WeightType.from_str(config.get("weight_type", "")),
"training_codebase": DisclosedType.from_str(config.get("training_codebase", "")),
"training_data": DisclosedType.from_str(config.get("training_data", "")),
}
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", data.get("model_name", config.get("model_args", None)))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
# pdb.set_trace()
results = {}
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array(
[
v.get(task.metric, None) if task.higher_is_better else 1 - v.get(task.metric, None)
for k, v in data["results"].items()
if task.benchmark == k
]
)
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs)
if task.scale_by_100:
mean_acc *= 100.0
results[task.benchmark] = {"value": mean_acc, "category": task.category}
# pdb.set_trace()
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
**additional_info,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# compute one average score per category
def _get_score_category(category):
filtered_scores = [v["value"] for _, v in self.results.items() if v["category"] == category]
return sum(filtered_scores) / len(filtered_scores)
average_NLU = _get_score_category("NLU")
average_CFK = _get_score_category("CFK")
average_BFS = _get_score_category("BFS")
average = (average_NLU + average_CFK + average_BFS) / 3
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.average_NLU.name: average_NLU,
AutoEvalColumn.average_CFK.name: average_CFK,
AutoEvalColumn.average_BFS.name: average_BFS,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.training_codebase.name: self.training_codebase.value.symbol,
AutoEvalColumn.training_data.name: self.training_data.value.symbol,
}
for task in Tasks:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
# Exclude any "samples_* file"
model_result_filepaths = [m for m in model_result_filepaths if not os.path.basename(m).startswith("samples_")]
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
# eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results_for_table = list()
for k, v in eval_results.items():
try:
v.to_dict() # we test if the dict version is complete
results_for_table.append(v)
except RuntimeError as e: # not all eval values present
print(f"Issue with results of: ", k)
raise e
# continue
return results_for_table
|