File size: 9,958 Bytes
8da8f47 826fb0d 8da8f47 826fb0d 8da8f47 826fb0d 8da8f47 826fb0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw
import requests
from copy import deepcopy
import cv2
from test_gradio import load_image, image_editing
import options.options as option
from utils.JPEG import DiffJPEG
from scipy.io.wavfile import read as wav_read
from scipy.io import wavfile
import os
import math
import argparse
import random
import logging
import torch.distributed as dist
import torch.multiprocessing as mp
from data.data_sampler import DistIterSampler
from utils import util
from data.util import read_img
from models import create_model as create_model_editguard
import base64
import gradio as gr
from scipy.ndimage import zoom
import matplotlib.pyplot as plt
def img_to_base64(filepath):
with open(filepath, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
logo_base64 = img_to_base64("./logo.png")
html_content = f"""
<div style='display: flex; align-items: center; justify-content: center; padding: 20px;'>
<img src='data:image/png;base64,{logo_base64}' alt='Logo' style='height: 50px; margin-right: 20px;'>
<strong><font size='8'>EditGuard<font></strong>
</div>
"""
# Examples
examples = [
["./dataset/examples/0011.png"],
["./dataset/examples/0012.png"],
["./dataset/examples/0003.png"],
["./dataset/examples/0004.png"],
["./dataset/examples/0005.png"],
["./dataset/examples/0006.png"],
["./dataset/examples/0007.png"],
["./dataset/examples/0008.png"],
["./dataset/examples/0009.png"],
["./dataset/examples/0010.png"],
["./dataset/examples/0002.png"],
]
default_example = examples[0]
def hiding(image_input, bit_input, model):
message = np.array([int(bit_input[i:i+1]) for i in range(0, len(bit_input), 1)])
message = message - 0.5
val_data = load_image(image_input, message)
model.feed_data(val_data)
container = model.image_hiding()
from PIL import Image
image = Image.fromarray(container)
return container, container
def rand(num_bits=64):
random_str = ''.join([str(random.randint(0, 1)) for _ in range(num_bits)])
return random_str
def ImageEdit(img, prompt, model_index):
image, mask = img["image"], np.float32(img["mask"])
received_image = image_editing(image, mask, prompt)
return received_image, received_image, received_image
def imgae_model_select(ckp_index=0):
# options
opt = option.parse("options/test_editguard.yml", is_train=True)
# distributed training settings
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
# loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
torch.backends.cudnn.benchmark = True
# create model
model = create_model_editguard(opt)
if ckp_index == 0:
model_pth = './checkpoints/clean.pth'
print(model_pth)
model.load_test(model_pth)
return model
def Gaussian_image_degradation(image, NL):
image = torch.from_numpy(np.transpose(image, (2, 0, 1)))
image = image.unsqueeze(0)
NL = NL / 255.0
noise = np.random.normal(0, NL, image.shape)
torchnoise = torch.from_numpy(noise).float()
y_forw = image + torchnoise
y_forw = torch.clamp(y_forw, 0, 1)
y_forw = y_forw.permute(0, 2, 3, 1)
y_forw = y_forw.cpu().detach().numpy().squeeze()
y_forw = (y_forw * 255.0).astype(np.uint8)
return y_forw, y_forw
def JPEG_image_degradation(image, NL):
image = image.astype(np.float32)
image = torch.from_numpy(np.transpose(image, (2, 0, 1)))
image = image.unsqueeze(0)
JPEG = DiffJPEG(differentiable=True, quality=int(NL))
y_forw = JPEG(image)
y_forw = y_forw.permute(0, 2, 3, 1)
y_forw = y_forw.cpu().detach().numpy().squeeze()
y_forw = (y_forw * 255.0).astype(np.uint8)
return y_forw, y_forw
def revealing(image_edited, input_bit, model_list, model):
if model_list==0:
number = 0.2
else:
number = 0.2
container_data = load_image(image_edited) ## load tampered images
model.feed_data(container_data)
mask, remesg = model.image_recovery(number)
mask = Image.fromarray(mask.astype(np.uint8))
remesg = remesg.cpu().numpy()[0]
remesg = ''.join([str(int(x)) for x in remesg])
bit_acc = calculate_similarity_percentage(input_bit, remesg)
return mask, remesg, bit_acc
def calculate_similarity_percentage(str1, str2):
if len(str1) == 0:
return "原始版权水印未知"
elif len(str1) != len(str2):
return "输入输出水印长度不同"
total_length = len(str1)
same_count = sum(1 for x, y in zip(str1, str2) if x == y)
similarity_percentage = (same_count / total_length) * 100
return f"{similarity_percentage}%"
# Description
title = "<center><strong><font size='8'>EditGuard<font></strong></center>"
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
with gr.Blocks(css=css, title="EditGuard") as demo:
gr.HTML(html_content)
model = gr.State(value = None)
save_h = gr.State(value = None)
save_w = gr.State(value = None)
sam_global_points = gr.State([])
sam_global_point_label = gr.State([])
sam_original_image = gr.State(value=None)
sam_mask = gr.State(value=None)
with gr.Tabs():
with gr.TabItem('多功能取证水印'):
DESCRIPTION = """
## 使用方法:
- 上传图像和版权水印(64位比特序列),点击"嵌入水印"按钮,生成带水印的图像。
- 涂抹要编辑的区域,并使用Inpainting算法编辑图像。
- 点击"提取"按钮检测篡改区域并输出版权水印。"""
gr.Markdown(DESCRIPTION)
save_inpainted_image = gr.State(value=None)
with gr.Column():
with gr.Row():
model_list = gr.Dropdown(label="选择模型", choices=["模型1"], type = 'index')
clear_button = gr.Button("清除全部")
with gr.Box():
gr.Markdown("# 1. 嵌入水印")
with gr.Row():
with gr.Column():
image_input = gr.Image(source='upload', label="原始图片", interactive=True, type="numpy", value=default_example[0])
with gr.Row():
bit_input = gr.Textbox(label="输入版权水印(64位比特序列)", placeholder="在这里输入...")
rand_bit = gr.Button("🎲 随机生成版权水印")
hiding_button = gr.Button("嵌入水印")
with gr.Column():
image_watermark = gr.Image(source="upload", label="带有水印的图片", interactive=True, type="numpy")
with gr.Box():
gr.Markdown("# 2. 篡改图片")
with gr.Row():
with gr.Column():
image_edit = gr.Image(source='upload',tool="sketch", label="选取篡改区域", interactive=True, type="numpy")
inpainting_model_list = gr.Dropdown(label="选择篡改模型", choices=["模型1:SD_inpainting"], type = 'index')
text_prompt = gr.Textbox(label="篡改提示词")
inpainting_button = gr.Button("篡改图片")
with gr.Column():
image_edited = gr.Image(source="upload", label="篡改结果", interactive=True, type="numpy")
with gr.Box():
gr.Markdown("# 3. 提取水印&篡改区域")
with gr.Row():
with gr.Column():
image_edited_1 = gr.Image(source="upload", label="待提取图片", interactive=True, type="numpy")
revealing_button = gr.Button("提取")
with gr.Column():
edit_mask = gr.Image(source='upload', label="编辑区域蒙版预测", interactive=True, type="numpy")
bit_output = gr.Textbox(label="版权水印预测")
acc_output = gr.Textbox(label="水印预测准确率")
gr.Examples(
examples=examples,
inputs=[image_input],
)
model_list.change(
imgae_model_select, inputs = [model_list], outputs=[model]
)
hiding_button.click(
hiding, inputs=[image_input, bit_input, model], outputs=[image_watermark, image_edit]
)
rand_bit.click(
rand, inputs=[], outputs=[bit_input]
)
inpainting_button.click(
ImageEdit, inputs = [image_edit, text_prompt, inpainting_model_list], outputs=[image_edited, image_edited_1, save_inpainted_image]
)
revealing_button.click(
revealing, inputs=[image_edited_1, bit_input, model_list, model], outputs=[edit_mask, bit_output, acc_output]
)
demo.launch(server_name="0.0.0.0", server_port=2004, share=True, favicon_path='./logo.png') |