File size: 10,417 Bytes
8da8f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import math
import argparse
import random
import logging

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from data.data_sampler import DistIterSampler

import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model


def init_dist(backend='nccl', **kwargs):
    ''' initialization for distributed training'''
    # if mp.get_start_method(allow_none=True) is None:
    if mp.get_start_method(allow_none=True) != 'spawn':
        mp.set_start_method('spawn')
    rank = int(os.environ['RANK'])
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(rank % num_gpus)
    dist.init_process_group(backend=backend, **kwargs)

def cal_pnsr(sr_img, gt_img):
    # calculate PSNR
    gt_img = gt_img / 255.
    sr_img = sr_img / 255.
    psnr = util.calculate_psnr(sr_img * 255, gt_img * 255)

    return psnr

def main():
    # options
    parser = argparse.ArgumentParser()
    parser.add_argument('-opt', type=str, help='Path to option YMAL file.')  # config 文件
    parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
                        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = option.parse(args.opt, is_train=True)

    # distributed training settings
    if args.launcher == 'none':  # disabled distributed training
        opt['dist'] = False
        rank = -1
        print('Disabled distributed training.')
    else:
        opt['dist'] = True
        init_dist()
        world_size = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()

    # loading resume state if exists
    if opt['path'].get('resume_state', None):
        # distributed resuming: all load into default GPU
        device_id = torch.cuda.current_device()
        resume_state = torch.load(opt['path']['resume_state'],
                                  map_location=lambda storage, loc: storage.cuda(device_id))
        # resume_state = torch.load(opt['path']['resume_state'],
        #                           map_location=lambda storage, loc: storage.cuda(device_id), strict=False)
        option.check_resume(opt, resume_state['iter'])  # check resume options
    else:
        resume_state = None

    # mkdir and loggers
    if rank <= 0:  # normal training (rank -1) OR distributed training (rank 0)
        if resume_state is None:
            util.mkdir_and_rename(
                opt['path']['experiments_root'])  # rename experiment folder if exists
            util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
                         and 'pretrain_model' not in key and 'resume' not in key))

        # config loggers. Before it, the log will not work
        util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
                          screen=True, tofile=True)
        util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
                          screen=True, tofile=True)
        logger = logging.getLogger('base')
        logger.info(option.dict2str(opt))
        # tensorboard logger
        if opt['use_tb_logger'] and 'debug' not in opt['name']:
            version = float(torch.__version__[0:3])
            if version >= 1.1:  # PyTorch 1.1
                from torch.utils.tensorboard import SummaryWriter
            else:
                logger.info(
                    'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
                from tensorboardX import SummaryWriter
            tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name'])
    else:
        util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
        logger = logging.getLogger('base')

    # convert to NoneDict, which returns None for missing keys
    opt = option.dict_to_nonedict(opt)

    # random seed
    seed = opt['train']['manual_seed']
    if seed is None:
        seed = random.randint(1, 10000)
    if rank <= 0:
        logger.info('Random seed: {}'.format(seed))
    util.set_random_seed(seed)

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    #### create train and val dataloader
    dataset_ratio = 200  # enlarge the size of each epoch
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            train_set = create_dataset(dataset_opt)
            train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
            total_iters = int(opt['train']['niter'])
            total_epochs = int(math.ceil(total_iters / train_size))
            if opt['dist']:
                train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
                total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
            else:
                train_sampler = None
            train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
            if rank <= 0:
                logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
                    len(train_set), train_size))
                logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
                    total_epochs, total_iters))
        elif phase == 'val':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(val_set, dataset_opt, opt, None)
            if rank <= 0:
                logger.info('Number of val images in [{:s}]: {:d}'.format(
                    dataset_opt['name'], len(val_set)))
        else:
            raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
    assert train_loader is not None

    # create model
    model = create_model(opt)
    # resume training
    if resume_state:
        logger.info('Resuming training from epoch: {}, iter: {}.'.format(
            resume_state['epoch'], resume_state['iter']))

        start_epoch = resume_state['epoch']
        current_step = resume_state['iter']
        model.resume_training(resume_state)  # handle optimizers and schedulers
    else:
        current_step = 0
        start_epoch = 0

    # training
    logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
    for epoch in range(start_epoch, total_epochs + 1):
        if opt['dist']:
            train_sampler.set_epoch(epoch)
        for _, train_data in enumerate(train_loader):
            current_step += 1
            if current_step > total_iters:
                break
            # training
            model.feed_data(train_data)
            model.optimize_parameters(current_step)

            # update learning rate
            model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])

            # log
            if current_step % opt['logger']['print_freq'] == 0:
                logs = model.get_current_log()
                message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(
                    epoch, current_step, model.get_current_learning_rate())
                for k, v in logs.items():
                    message += '{:s}: {:.4e} '.format(k, v)
                    # tensorboard logger
                    if opt['use_tb_logger'] and 'debug' not in opt['name']:
                        if rank <= 0:
                            tb_logger.add_scalar(k, v, current_step)
                if rank <= 0:
                    logger.info(message)

            # validation
            if current_step % opt['train']['val_freq'] == 0 and rank <= 0:
                avg_psnr = 0.0
                avg_psnr_h = [0.0]*opt['num_image']
                avg_psnr_lr = 0.0
                avg_biterr = 0.0
                idx = 0
                for image_id, val_data in enumerate(val_loader):
                    img_dir = os.path.join(opt['path']['val_images'])
                    util.mkdir(img_dir)

                    model.feed_data(val_data)
                    model.test(image_id)

                    visuals = model.get_current_visuals()

                    t_step = visuals['recmessage'].shape[0]
                    idx += t_step
                    n = 1
                    # print(visuals['message'].shape)
                    avg_biterr += util.decoded_message_error_rate_batch(visuals['recmessage'][0], visuals['message'][0])
                    print(util.decoded_message_error_rate_batch(visuals['recmessage'][0], visuals['message'][0]))

                    for i in range(t_step):

                        gt_img = util.tensor2img(visuals['GT'][i])  # uint8
                        lr_img = util.tensor2img(visuals['LR'][i])

                        save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'GT'))
                        util.save_img(gt_img, save_img_path)

                        save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'LR'))
                        util.save_img(lr_img, save_img_path)
                        psnr_lr = cal_pnsr(lr_img, gt_img)
                        avg_psnr_lr += psnr_lr

                avg_psnr_lr = avg_psnr_lr / idx
                avg_biterr = avg_biterr / idx

                logger.info('# Validation # PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format(avg_psnr_lr, avg_biterr))
                logger_val = logging.getLogger('val')  # validation logger
                logger_val.info('<epoch:{:3d}, iter:{:8,d}> PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format(
                    epoch, current_step, avg_psnr_lr, avg_biterr))
                # tensorboard logger
                if opt['use_tb_logger'] and 'debug' not in opt['name']:
                    tb_logger.add_scalar('psnr', avg_psnr, current_step)

            # save models and training states
            if current_step % opt['logger']['save_checkpoint_freq'] == 0:
                if rank <= 0:
                    logger.info('Saving models and training states.')
                    model.save(current_step)
                    model.save_training_state(epoch, current_step)

    if rank <= 0:
        logger.info('Saving the final model.')
        model.save('latest')
        logger.info('End of training.')


if __name__ == '__main__':
    main()