EditGuard / train.py
Ricoooo's picture
Add local files to repository
8da8f47
import os
import math
import argparse
import random
import logging
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from data.data_sampler import DistIterSampler
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
def init_dist(backend='nccl', **kwargs):
''' initialization for distributed training'''
# if mp.get_start_method(allow_none=True) is None:
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
def cal_pnsr(sr_img, gt_img):
# calculate PSNR
gt_img = gt_img / 255.
sr_img = sr_img / 255.
psnr = util.calculate_psnr(sr_img * 255, gt_img * 255)
return psnr
def main():
# options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YMAL file.') # config 文件
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
# distributed training settings
if args.launcher == 'none': # disabled distributed training
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
else:
opt['dist'] = True
init_dist()
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
# loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
# resume_state = torch.load(opt['path']['resume_state'],
# map_location=lambda storage, loc: storage.cuda(device_id), strict=False)
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
# mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name'])
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
# random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
#### create train and val dataloader
dataset_ratio = 200 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = create_dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
if opt['dist']:
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
else:
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
elif phase == 'val':
val_set = create_dataset(dataset_opt)
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
if rank <= 0:
logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
# create model
model = create_model(opt)
# resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
current_step = 0
start_epoch = 0
# training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs + 1):
if opt['dist']:
train_sampler.set_epoch(epoch)
for _, train_data in enumerate(train_loader):
current_step += 1
if current_step > total_iters:
break
# training
model.feed_data(train_data)
model.optimize_parameters(current_step)
# update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
# log
if current_step % opt['logger']['print_freq'] == 0:
logs = model.get_current_log()
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(
epoch, current_step, model.get_current_learning_rate())
for k, v in logs.items():
message += '{:s}: {:.4e} '.format(k, v)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
if rank <= 0:
tb_logger.add_scalar(k, v, current_step)
if rank <= 0:
logger.info(message)
# validation
if current_step % opt['train']['val_freq'] == 0 and rank <= 0:
avg_psnr = 0.0
avg_psnr_h = [0.0]*opt['num_image']
avg_psnr_lr = 0.0
avg_biterr = 0.0
idx = 0
for image_id, val_data in enumerate(val_loader):
img_dir = os.path.join(opt['path']['val_images'])
util.mkdir(img_dir)
model.feed_data(val_data)
model.test(image_id)
visuals = model.get_current_visuals()
t_step = visuals['SR'].shape[0]
idx += t_step
n = len(visuals['SR_h'])
avg_biterr += util.decoded_message_error_rate_batch(visuals['recmessage'][0], visuals['message'][0])
for i in range(t_step):
sr_img = util.tensor2img(visuals['SR'][i]) # uint8
sr_img_h = []
for j in range(n):
sr_img_h.append(util.tensor2img(visuals['SR_h'][j][i])) # uint8
gt_img = util.tensor2img(visuals['GT'][i]) # uint8
lr_img = util.tensor2img(visuals['LR'][i])
lrgt_img = []
for j in range(n):
lrgt_img.append(util.tensor2img(visuals['LR_ref'][j][i]))
# Save SR images for reference
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'SR'))
util.save_img(sr_img, save_img_path)
for j in range(n):
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:d}_{:s}.png'.format(image_id, i, j, 'SR_h'))
util.save_img(sr_img_h[j], save_img_path)
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'GT'))
util.save_img(gt_img, save_img_path)
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:s}.png'.format(image_id, i, 'LR'))
util.save_img(lr_img, save_img_path)
for j in range(n):
save_img_path = os.path.join(img_dir,'{:d}_{:d}_{:d}_{:s}.png'.format(image_id, i, j, 'LRGT'))
util.save_img(lrgt_img[j], save_img_path)
psnr = cal_pnsr(sr_img, gt_img)
psnr_h = []
for j in range(n):
psnr_h.append(cal_pnsr(sr_img_h[j], lrgt_img[j]))
psnr_lr = cal_pnsr(lr_img, gt_img)
avg_psnr += psnr
for j in range(n):
avg_psnr_h[j] += psnr_h[j]
avg_psnr_lr += psnr_lr
avg_psnr = avg_psnr / idx
avg_psnr_h = [psnr / idx for psnr in avg_psnr_h]
avg_psnr_lr = avg_psnr_lr / idx
avg_biterr = avg_biterr / idx
# log
res_psnr_h = ''
for p in avg_psnr_h:
res_psnr_h+=('_{:.4e}'.format(p))
logger.info('# Validation # PSNR_Cover: {:.4e}, PSNR_Secret: {:s}, PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format(avg_psnr, res_psnr_h, avg_psnr_lr, avg_biterr))
logger_val = logging.getLogger('val') # validation logger
logger_val.info('<epoch:{:3d}, iter:{:8,d}> PSNR_Cover: {:.4e}, PSNR_Secret: {:s}, PSNR_Stego: {:.4e}, Bit_acc: {: .4e}'.format(
epoch, current_step, avg_psnr, res_psnr_h, avg_psnr_lr, avg_biterr))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr', avg_psnr, current_step)
# save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
if __name__ == '__main__':
main()