from . import * from .noise_layers import * class Random_Noise(nn.Module): def __init__(self, layers, len_layers_R, len_layers_F): super(Random_Noise, self).__init__() for i in range(len(layers)): layers[i] = eval(layers[i]) self.noise = nn.Sequential(*layers) self.len_layers_R = len_layers_R self.len_layers_F = len_layers_F print(self.noise) self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) def forward(self, image_cover_mask): image, cover_image, mask = image_cover_mask[0], image_cover_mask[1], image_cover_mask[2] forward_image = image.clone().detach() forward_cover_image = cover_image.clone().detach() forward_mask = mask.clone().detach() noised_image_C = torch.zeros_like(forward_image) noised_image_R = torch.zeros_like(forward_image) noised_image_F = torch.zeros_like(forward_image) for index in range(forward_image.shape[0]): random_noise_layer_C = np.random.choice(self.noise, 1)[0] random_noise_layer_R = np.random.choice(self.noise[0:self.len_layers_R], 1)[0] random_noise_layer_F = np.random.choice(self.noise[self.len_layers_R:self.len_layers_R + self.len_layers_F], 1)[0] noised_image_C[index] = random_noise_layer_C([forward_image[index].clone().unsqueeze(0), forward_cover_image[index].clone().unsqueeze(0), forward_mask[index].clone().unsqueeze(0)]) noised_image_R[index] = random_noise_layer_R([forward_image[index].clone().unsqueeze(0), forward_cover_image[index].clone().unsqueeze(0), forward_mask[index].clone().unsqueeze(0)]) noised_image_F[index] = random_noise_layer_F([forward_image[index].clone().unsqueeze(0), forward_cover_image[index].clone().unsqueeze(0), forward_mask[index].clone().unsqueeze(0)]) '''single_image = ((noised_image_C[index].clamp(-1, 1).permute(1, 2, 0) + 1) / 2 * 255).add(0.5).clamp(0, 255).to('cpu', torch.uint8).numpy() im = Image.fromarray(single_image) read = np.array(im, dtype=np.uint8) noised_image_C[index] = self.transform(read).unsqueeze(0).to(image.device) single_image = ((noised_image_R[index].clamp(-1, 1).permute(1, 2, 0) + 1) / 2 * 255).add(0.5).clamp(0, 255).to('cpu', torch.uint8).numpy() im = Image.fromarray(single_image) read = np.array(im, dtype=np.uint8) noised_image_R[index] = self.transform(read).unsqueeze(0).to(image.device) single_image = ((noised_image_F[index].clamp(-1, 1).permute(1, 2, 0) + 1) / 2 * 255).add(0.5).clamp(0, 255).to('cpu', torch.uint8).numpy() im = Image.fromarray(single_image) read = np.array(im, dtype=np.uint8) noised_image_F[index] = self.transform(read).unsqueeze(0).to(image.device) noised_image_gap_C = noised_image_C - forward_image noised_image_gap_R = noised_image_R - forward_image noised_image_gap_F = noised_image_F - forward_image''' noised_image_gap_C = noised_image_C.clamp(-1, 1) - forward_image noised_image_gap_R = noised_image_R.clamp(-1, 1) - forward_image noised_image_gap_F = noised_image_F.clamp(-1, 1) - forward_image return image + noised_image_gap_C, image + noised_image_gap_R, image + noised_image_gap_F