File size: 44,436 Bytes
c2dad70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
import audioread
import librosa
import os
import sys
import json
import time
from tqdm import tqdm
import pickle
import hashlib
import logging
import traceback
import shutil
import soundfile as sf
import torch
from gui_data.constants import *
from gui_data.old_data_check import file_check, remove_unneeded_yamls, remove_temps
from lib_v5.vr_network.model_param_init import ModelParameters
from lib_v5 import spec_utils
from pathlib import Path
from separate import SeperateAttributes, SeperateDemucs, SeperateMDX, SeperateVR, save_format
from typing import List
logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO)
logging.info('UVR BEGIN')
PREVIOUS_PATCH_WIN = 'UVR_Patch_1_12_23_14_54'
is_dnd_compatible = True
banner_placement = -2
def save_data(data):
"""
Saves given data as a .pkl (pickle) file
Paramters:
data(dict):
Dictionary containing all the necessary data to save
"""
# Open data file, create it if it does not exist
with open('data.pkl', 'wb') as data_file:
pickle.dump(data, data_file)
def load_data() -> dict:
"""
Loads saved pkl file and returns the stored data
Returns(dict):
Dictionary containing all the saved data
"""
try:
with open('data.pkl', 'rb') as data_file: # Open data file
data = pickle.load(data_file)
return data
except (ValueError, FileNotFoundError):
# Data File is corrupted or not found so recreate it
save_data(data=DEFAULT_DATA)
return load_data()
def load_model_hash_data(dictionary):
'''Get the model hash dictionary'''
with open(dictionary) as d:
data = d.read()
return json.loads(data)
# Change the current working directory to the directory
# this file sits in
if getattr(sys, 'frozen', False):
# If the application is run as a bundle, the PyInstaller bootloader
# extends the sys module by a flag frozen=True and sets the app
# path into variable _MEIPASS'.
BASE_PATH = sys._MEIPASS
else:
BASE_PATH = os.path.dirname(os.path.abspath(__file__))
os.chdir(BASE_PATH) # Change the current working directory to the base path
debugger = []
#--Constants--
#Models
MODELS_DIR = os.path.join(BASE_PATH, 'models')
VR_MODELS_DIR = os.path.join(MODELS_DIR, 'VR_Models')
MDX_MODELS_DIR = os.path.join(MODELS_DIR, 'MDX_Net_Models')
DEMUCS_MODELS_DIR = os.path.join(MODELS_DIR, 'Demucs_Models')
DEMUCS_NEWER_REPO_DIR = os.path.join(DEMUCS_MODELS_DIR, 'v3_v4_repo')
MDX_MIXER_PATH = os.path.join(BASE_PATH, 'lib_v5', 'mixer.ckpt')
#Cache & Parameters
VR_HASH_DIR = os.path.join(VR_MODELS_DIR, 'model_data')
VR_HASH_JSON = os.path.join(VR_MODELS_DIR, 'model_data', 'model_data.json')
MDX_HASH_DIR = os.path.join(MDX_MODELS_DIR, 'model_data')
MDX_HASH_JSON = os.path.join(MDX_MODELS_DIR, 'model_data', 'model_data.json')
DEMUCS_MODEL_NAME_SELECT = os.path.join(DEMUCS_MODELS_DIR, 'model_data', 'model_name_mapper.json')
MDX_MODEL_NAME_SELECT = os.path.join(MDX_MODELS_DIR, 'model_data', 'model_name_mapper.json')
ENSEMBLE_CACHE_DIR = os.path.join(BASE_PATH, 'gui_data', 'saved_ensembles')
SETTINGS_CACHE_DIR = os.path.join(BASE_PATH, 'gui_data', 'saved_settings')
VR_PARAM_DIR = os.path.join(BASE_PATH, 'lib_v5', 'vr_network', 'modelparams')
SAMPLE_CLIP_PATH = os.path.join(BASE_PATH, 'temp_sample_clips')
ENSEMBLE_TEMP_PATH = os.path.join(BASE_PATH, 'ensemble_temps')
#Style
ICON_IMG_PATH = os.path.join(BASE_PATH, 'gui_data', 'img', 'GUI-Icon.ico')
FONT_PATH = os.path.join(BASE_PATH, 'gui_data', 'fonts', 'centurygothic', 'GOTHIC.TTF')#ensemble_temps
#Other
COMPLETE_CHIME = os.path.join(BASE_PATH, 'gui_data', 'complete_chime.wav')
FAIL_CHIME = os.path.join(BASE_PATH, 'gui_data', 'fail_chime.wav')
CHANGE_LOG = os.path.join(BASE_PATH, 'gui_data', 'change_log.txt')
SPLASH_DOC = os.path.join(BASE_PATH, 'tmp', 'splash.txt')
file_check(os.path.join(MODELS_DIR, 'Main_Models'), VR_MODELS_DIR)
file_check(os.path.join(DEMUCS_MODELS_DIR, 'v3_repo'), DEMUCS_NEWER_REPO_DIR)
remove_unneeded_yamls(DEMUCS_MODELS_DIR)
remove_temps(ENSEMBLE_TEMP_PATH)
remove_temps(SAMPLE_CLIP_PATH)
remove_temps(os.path.join(BASE_PATH, 'img'))
if not os.path.isdir(ENSEMBLE_TEMP_PATH):
os.mkdir(ENSEMBLE_TEMP_PATH)
if not os.path.isdir(SAMPLE_CLIP_PATH):
os.mkdir(SAMPLE_CLIP_PATH)
model_hash_table = {}
data = load_data()
class ModelData():
def __init__(self, model_name: str,
selected_process_method=ENSEMBLE_MODE,
is_secondary_model=False,
primary_model_primary_stem=None,
is_primary_model_primary_stem_only=False,
is_primary_model_secondary_stem_only=False,
is_pre_proc_model=False,
is_dry_check=False):
self.is_gpu_conversion = 0 if root.is_gpu_conversion_var.get() else -1
self.is_normalization = root.is_normalization_var.get()
self.is_primary_stem_only = root.is_primary_stem_only_var.get()
self.is_secondary_stem_only = root.is_secondary_stem_only_var.get()
self.is_denoise = root.is_denoise_var.get()
self.mdx_batch_size = 1 if root.mdx_batch_size_var.get() == DEF_OPT else int(root.mdx_batch_size_var.get())
self.is_mdx_ckpt = False
self.wav_type_set = root.wav_type_set
self.mp3_bit_set = root.mp3_bit_set_var.get()
self.save_format = root.save_format_var.get()
self.is_invert_spec = root.is_invert_spec_var.get()
self.is_mixer_mode = root.is_mixer_mode_var.get()
self.demucs_stems = root.demucs_stems_var.get()
self.demucs_source_list = []
self.demucs_stem_count = 0
self.mixer_path = MDX_MIXER_PATH
self.model_name = model_name
self.process_method = selected_process_method
self.model_status = False if self.model_name == CHOOSE_MODEL or self.model_name == NO_MODEL else True
self.primary_stem = None
self.secondary_stem = None
self.is_ensemble_mode = False
self.ensemble_primary_stem = None
self.ensemble_secondary_stem = None
self.primary_model_primary_stem = primary_model_primary_stem
self.is_secondary_model = is_secondary_model
self.secondary_model = None
self.secondary_model_scale = None
self.demucs_4_stem_added_count = 0
self.is_demucs_4_stem_secondaries = False
self.is_4_stem_ensemble = False
self.pre_proc_model = None
self.pre_proc_model_activated = False
self.is_pre_proc_model = is_pre_proc_model
self.is_dry_check = is_dry_check
self.model_samplerate = 44100
self.model_capacity = 32, 128
self.is_vr_51_model = False
self.is_demucs_pre_proc_model_inst_mix = False
self.manual_download_Button = None
self.secondary_model_4_stem = []
self.secondary_model_4_stem_scale = []
self.secondary_model_4_stem_names = []
self.secondary_model_4_stem_model_names_list = []
self.all_models = []
self.secondary_model_other = None
self.secondary_model_scale_other = None
self.secondary_model_bass = None
self.secondary_model_scale_bass = None
self.secondary_model_drums = None
self.secondary_model_scale_drums = None
if selected_process_method == ENSEMBLE_MODE:
partitioned_name = model_name.partition(ENSEMBLE_PARTITION)
self.process_method = partitioned_name[0]
self.model_name = partitioned_name[2]
self.model_and_process_tag = model_name
self.ensemble_primary_stem, self.ensemble_secondary_stem = root.return_ensemble_stems()
self.is_ensemble_mode = True if not is_secondary_model and not is_pre_proc_model else False
self.is_4_stem_ensemble = True if root.ensemble_main_stem_var.get() == FOUR_STEM_ENSEMBLE and self.is_ensemble_mode else False
self.pre_proc_model_activated = root.is_demucs_pre_proc_model_activate_var.get() if not self.ensemble_primary_stem == VOCAL_STEM else False
if self.process_method == VR_ARCH_TYPE:
self.is_secondary_model_activated = root.vr_is_secondary_model_activate_var.get() if not self.is_secondary_model else False
self.aggression_setting = float(int(root.aggression_setting_var.get())/100)
self.is_tta = root.is_tta_var.get()
self.is_post_process = root.is_post_process_var.get()
self.window_size = int(root.window_size_var.get())
self.batch_size = 1 if root.batch_size_var.get() == DEF_OPT else int(root.batch_size_var.get())
self.crop_size = int(root.crop_size_var.get())
self.is_high_end_process = 'mirroring' if root.is_high_end_process_var.get() else 'None'
self.post_process_threshold = float(root.post_process_threshold_var.get())
self.model_capacity = 32, 128
self.model_path = os.path.join(VR_MODELS_DIR, f"{self.model_name}.pth")
self.get_model_hash()
if self.model_hash:
self.model_data = self.get_model_data(VR_HASH_DIR, root.vr_hash_MAPPER) if not self.model_hash == WOOD_INST_MODEL_HASH else WOOD_INST_PARAMS
if self.model_data:
vr_model_param = os.path.join(VR_PARAM_DIR, "{}.json".format(self.model_data["vr_model_param"]))
self.primary_stem = self.model_data["primary_stem"]
self.secondary_stem = STEM_PAIR_MAPPER[self.primary_stem]
self.vr_model_param = ModelParameters(vr_model_param)
self.model_samplerate = self.vr_model_param.param['sr']
if "nout" in self.model_data.keys() and "nout_lstm" in self.model_data.keys():
self.model_capacity = self.model_data["nout"], self.model_data["nout_lstm"]
self.is_vr_51_model = True
else:
self.model_status = False
if self.process_method == MDX_ARCH_TYPE:
self.is_secondary_model_activated = root.mdx_is_secondary_model_activate_var.get() if not is_secondary_model else False
self.margin = int(root.margin_var.get())
self.chunks = root.determine_auto_chunks(root.chunks_var.get(), self.is_gpu_conversion) if root.is_chunk_mdxnet_var.get() else 0
self.get_mdx_model_path()
self.get_model_hash()
if self.model_hash:
self.model_data = self.get_model_data(MDX_HASH_DIR, root.mdx_hash_MAPPER)
if self.model_data:
self.compensate = self.model_data["compensate"] if root.compensate_var.get() == AUTO_SELECT else float(root.compensate_var.get())
self.mdx_dim_f_set = self.model_data["mdx_dim_f_set"]
self.mdx_dim_t_set = self.model_data["mdx_dim_t_set"]
self.mdx_n_fft_scale_set = self.model_data["mdx_n_fft_scale_set"]
self.primary_stem = self.model_data["primary_stem"]
self.secondary_stem = STEM_PAIR_MAPPER[self.primary_stem]
else:
self.model_status = False
if self.process_method == DEMUCS_ARCH_TYPE:
self.is_secondary_model_activated = root.demucs_is_secondary_model_activate_var.get() if not is_secondary_model else False
if not self.is_ensemble_mode:
self.pre_proc_model_activated = root.is_demucs_pre_proc_model_activate_var.get() if not root.demucs_stems_var.get() in [VOCAL_STEM, INST_STEM] else False
self.overlap = float(root.overlap_var.get())
self.margin_demucs = int(root.margin_demucs_var.get())
self.chunks_demucs = root.determine_auto_chunks(root.chunks_demucs_var.get(), self.is_gpu_conversion)
self.shifts = int(root.shifts_var.get())
self.is_split_mode = root.is_split_mode_var.get()
self.segment = root.segment_var.get()
self.is_chunk_demucs = root.is_chunk_demucs_var.get()
self.is_demucs_combine_stems = root.is_demucs_combine_stems_var.get()
self.is_primary_stem_only = root.is_primary_stem_only_var.get() if self.is_ensemble_mode else root.is_primary_stem_only_Demucs_var.get()
self.is_secondary_stem_only = root.is_secondary_stem_only_var.get() if self.is_ensemble_mode else root.is_secondary_stem_only_Demucs_var.get()
self.get_demucs_model_path()
self.get_demucs_model_data()
self.model_basename = os.path.splitext(os.path.basename(self.model_path))[0] if self.model_status else None
self.pre_proc_model_activated = self.pre_proc_model_activated if not self.is_secondary_model else False
self.is_primary_model_primary_stem_only = is_primary_model_primary_stem_only
self.is_primary_model_secondary_stem_only = is_primary_model_secondary_stem_only
if self.is_secondary_model_activated and self.model_status:
if (not self.is_ensemble_mode and root.demucs_stems_var.get() == ALL_STEMS and self.process_method == DEMUCS_ARCH_TYPE) or self.is_4_stem_ensemble:
for key in DEMUCS_4_SOURCE_LIST:
self.secondary_model_data(key)
self.secondary_model_4_stem.append(self.secondary_model)
self.secondary_model_4_stem_scale.append(self.secondary_model_scale)
self.secondary_model_4_stem_names.append(key)
self.demucs_4_stem_added_count = sum(i is not None for i in self.secondary_model_4_stem)
self.is_secondary_model_activated = False if all(i is None for i in self.secondary_model_4_stem) else True
self.demucs_4_stem_added_count = self.demucs_4_stem_added_count - 1 if self.is_secondary_model_activated else self.demucs_4_stem_added_count
if self.is_secondary_model_activated:
self.secondary_model_4_stem_model_names_list = [None if i is None else i.model_basename for i in self.secondary_model_4_stem]
self.is_demucs_4_stem_secondaries = True
else:
primary_stem = self.ensemble_primary_stem if self.is_ensemble_mode and self.process_method == DEMUCS_ARCH_TYPE else self.primary_stem
self.secondary_model_data(primary_stem)
if self.process_method == DEMUCS_ARCH_TYPE and not is_secondary_model:
if self.demucs_stem_count >= 3 and self.pre_proc_model_activated:
self.pre_proc_model_activated = True
self.pre_proc_model = root.process_determine_demucs_pre_proc_model(self.primary_stem)
self.is_demucs_pre_proc_model_inst_mix = root.is_demucs_pre_proc_model_inst_mix_var.get() if self.pre_proc_model else False
def secondary_model_data(self, primary_stem):
secondary_model_data = root.process_determine_secondary_model(self.process_method, primary_stem, self.is_primary_stem_only, self.is_secondary_stem_only)
self.secondary_model = secondary_model_data[0]
self.secondary_model_scale = secondary_model_data[1]
self.is_secondary_model_activated = False if not self.secondary_model else True
if self.secondary_model:
self.is_secondary_model_activated = False if self.secondary_model.model_basename == self.model_basename else True
def get_mdx_model_path(self):
if self.model_name.endswith(CKPT):
# self.chunks = 0
# self.is_mdx_batch_mode = True
self.is_mdx_ckpt = True
ext = '' if self.is_mdx_ckpt else ONNX
for file_name, chosen_mdx_model in root.mdx_name_select_MAPPER.items():
if self.model_name in chosen_mdx_model:
self.model_path = os.path.join(MDX_MODELS_DIR, f"{file_name}{ext}")
break
else:
self.model_path = os.path.join(MDX_MODELS_DIR, f"{self.model_name}{ext}")
self.mixer_path = os.path.join(MDX_MODELS_DIR, f"mixer_val.ckpt")
def get_demucs_model_path(self):
demucs_newer = [True for x in DEMUCS_NEWER_TAGS if x in self.model_name]
demucs_model_dir = DEMUCS_NEWER_REPO_DIR if demucs_newer else DEMUCS_MODELS_DIR
for file_name, chosen_model in root.demucs_name_select_MAPPER.items():
if self.model_name in chosen_model:
self.model_path = os.path.join(demucs_model_dir, file_name)
break
else:
self.model_path = os.path.join(DEMUCS_NEWER_REPO_DIR, f'{self.model_name}.yaml')
def get_demucs_model_data(self):
self.demucs_version = DEMUCS_V4
for key, value in DEMUCS_VERSION_MAPPER.items():
if value in self.model_name:
self.demucs_version = key
self.demucs_source_list = DEMUCS_2_SOURCE if DEMUCS_UVR_MODEL in self.model_name else DEMUCS_4_SOURCE
self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER if DEMUCS_UVR_MODEL in self.model_name else DEMUCS_4_SOURCE_MAPPER
self.demucs_stem_count = 2 if DEMUCS_UVR_MODEL in self.model_name else 4
if not self.is_ensemble_mode:
self.primary_stem = PRIMARY_STEM if self.demucs_stems == ALL_STEMS else self.demucs_stems
self.secondary_stem = STEM_PAIR_MAPPER[self.primary_stem]
def get_model_data(self, model_hash_dir, hash_mapper):
model_settings_json = os.path.join(model_hash_dir, "{}.json".format(self.model_hash))
if os.path.isfile(model_settings_json):
return json.load(open(model_settings_json))
else:
for hash, settings in hash_mapper.items():
if self.model_hash in hash:
return settings
else:
return self.get_model_data_from_popup()
def get_model_data_from_popup(self):
return None
def get_model_hash(self):
self.model_hash = None
if not os.path.isfile(self.model_path):
self.model_status = False
self.model_hash is None
else:
if model_hash_table:
for (key, value) in model_hash_table.items():
if self.model_path == key:
self.model_hash = value
break
if not self.model_hash:
try:
with open(self.model_path, 'rb') as f:
f.seek(- 10000 * 1024, 2)
self.model_hash = hashlib.md5(f.read()).hexdigest()
except:
self.model_hash = hashlib.md5(open(self.model_path,'rb').read()).hexdigest()
table_entry = {self.model_path: self.model_hash}
model_hash_table.update(table_entry)
class Ensembler():
def __init__(self, is_manual_ensemble=False):
self.is_save_all_outputs_ensemble = root.is_save_all_outputs_ensemble_var.get()
chosen_ensemble_name = '{}'.format(root.chosen_ensemble_var.get().replace(" ", "_")) if not root.chosen_ensemble_var.get() == CHOOSE_ENSEMBLE_OPTION else 'Ensembled'
ensemble_algorithm = root.ensemble_type_var.get().partition("/")
ensemble_main_stem_pair = root.ensemble_main_stem_var.get().partition("/")
time_stamp = round(time.time())
self.audio_tool = MANUAL_ENSEMBLE
self.main_export_path = Path(root.export_path_var.get())
self.chosen_ensemble = f"_{chosen_ensemble_name}" if root.is_append_ensemble_name_var.get() else ''
ensemble_folder_name = self.main_export_path if self.is_save_all_outputs_ensemble else ENSEMBLE_TEMP_PATH
self.ensemble_folder_name = os.path.join(ensemble_folder_name, '{}_Outputs_{}'.format(chosen_ensemble_name, time_stamp))
self.is_testing_audio = f"{time_stamp}_" if root.is_testing_audio_var.get() else ''
self.primary_algorithm = ensemble_algorithm[0]
self.secondary_algorithm = ensemble_algorithm[2]
self.ensemble_primary_stem = ensemble_main_stem_pair[0]
self.ensemble_secondary_stem = ensemble_main_stem_pair[2]
self.is_normalization = root.is_normalization_var.get()
self.wav_type_set = root.wav_type_set
self.mp3_bit_set = root.mp3_bit_set_var.get()
self.save_format = root.save_format_var.get()
if not is_manual_ensemble:
os.mkdir(self.ensemble_folder_name)
def ensemble_outputs(self, audio_file_base, export_path, stem, is_4_stem=False, is_inst_mix=False):
"""Processes the given outputs and ensembles them with the chosen algorithm"""
if is_4_stem:
algorithm = root.ensemble_type_var.get()
stem_tag = stem
else:
if is_inst_mix:
algorithm = self.secondary_algorithm
stem_tag = f"{self.ensemble_secondary_stem} {INST_STEM}"
else:
algorithm = self.primary_algorithm if stem == PRIMARY_STEM else self.secondary_algorithm
stem_tag = self.ensemble_primary_stem if stem == PRIMARY_STEM else self.ensemble_secondary_stem
stem_outputs = self.get_files_to_ensemble(folder=export_path, prefix=audio_file_base, suffix=f"_({stem_tag}).wav")
audio_file_output = f"{self.is_testing_audio}{audio_file_base}{self.chosen_ensemble}_({stem_tag})"
stem_save_path = os.path.join('{}'.format(self.main_export_path),'{}.wav'.format(audio_file_output))
if stem_outputs:
spec_utils.ensemble_inputs(stem_outputs, algorithm, self.is_normalization, self.wav_type_set, stem_save_path)
save_format(stem_save_path, self.save_format, self.mp3_bit_set)
if self.is_save_all_outputs_ensemble:
for i in stem_outputs:
save_format(i, self.save_format, self.mp3_bit_set)
else:
for i in stem_outputs:
try:
os.remove(i)
except Exception as e:
print(e)
def ensemble_manual(self, audio_inputs, audio_file_base, is_bulk=False):
"""Processes the given outputs and ensembles them with the chosen algorithm"""
is_mv_sep = True
if is_bulk:
number_list = list(set([os.path.basename(i).split("_")[0] for i in audio_inputs]))
for n in number_list:
current_list = [i for i in audio_inputs if os.path.basename(i).startswith(n)]
audio_file_base = os.path.basename(current_list[0]).split('.wav')[0]
stem_testing = "instrum" if "Instrumental" in audio_file_base else "vocals"
if is_mv_sep:
audio_file_base = audio_file_base.split("_")
audio_file_base = f"{audio_file_base[1]}_{audio_file_base[2]}_{stem_testing}"
self.ensemble_manual_process(current_list, audio_file_base, is_bulk)
else:
self.ensemble_manual_process(audio_inputs, audio_file_base, is_bulk)
def ensemble_manual_process(self, audio_inputs, audio_file_base, is_bulk):
algorithm = root.choose_algorithm_var.get()
algorithm_text = "" if is_bulk else f"_({root.choose_algorithm_var.get()})"
stem_save_path = os.path.join('{}'.format(self.main_export_path),'{}{}{}.wav'.format(self.is_testing_audio, audio_file_base, algorithm_text))
spec_utils.ensemble_inputs(audio_inputs, algorithm, self.is_normalization, self.wav_type_set, stem_save_path)
save_format(stem_save_path, self.save_format, self.mp3_bit_set)
def get_files_to_ensemble(self, folder="", prefix="", suffix=""):
"""Grab all the files to be ensembled"""
return [os.path.join(folder, i) for i in os.listdir(folder) if i.startswith(prefix) and i.endswith(suffix)]
def secondary_stem(stem):
"""Determines secondary stem"""
for key, value in STEM_PAIR_MAPPER.items():
if stem in key:
secondary_stem = value
return secondary_stem
class UVRInterface:
def __init__(self) -> None:
pass
def assemble_model_data(self, model=None, arch_type=ENSEMBLE_MODE, is_dry_check=False) -> List[ModelData]:
if arch_type == ENSEMBLE_STEM_CHECK:
model_data = self.model_data_table
missing_models = [model.model_status for model in model_data if not model.model_status]
if missing_models or not model_data:
model_data: List[ModelData] = [ModelData(model_name, is_dry_check=is_dry_check) for model_name in self.ensemble_model_list]
self.model_data_table = model_data
if arch_type == ENSEMBLE_MODE:
model_data: List[ModelData] = [ModelData(model_name) for model_name in self.ensemble_listbox_get_all_selected_models()]
if arch_type == ENSEMBLE_CHECK:
model_data: List[ModelData] = [ModelData(model)]
if arch_type == VR_ARCH_TYPE or arch_type == VR_ARCH_PM:
model_data: List[ModelData] = [ModelData(model, VR_ARCH_TYPE)]
if arch_type == MDX_ARCH_TYPE:
model_data: List[ModelData] = [ModelData(model, MDX_ARCH_TYPE)]
if arch_type == DEMUCS_ARCH_TYPE:
model_data: List[ModelData] = [ModelData(model, DEMUCS_ARCH_TYPE)]#
return model_data
def create_sample(self, audio_file, sample_path=SAMPLE_CLIP_PATH):
try:
with audioread.audio_open(audio_file) as f:
track_length = int(f.duration)
except Exception as e:
print('Audioread failed to get duration. Trying Librosa...')
y, sr = librosa.load(audio_file, mono=False, sr=44100)
track_length = int(librosa.get_duration(y=y, sr=sr))
clip_duration = int(root.model_sample_mode_duration_var.get())
if track_length >= clip_duration:
offset_cut = track_length//3
off_cut = offset_cut + track_length
if not off_cut >= clip_duration:
offset_cut = 0
name_apped = f'{clip_duration}_second_'
else:
offset_cut, clip_duration = 0, track_length
name_apped = ''
sample = librosa.load(audio_file, offset=offset_cut, duration=clip_duration, mono=False, sr=44100)[0].T
audio_sample = os.path.join(sample_path, f'{os.path.splitext(os.path.basename(audio_file))[0]}_{name_apped}sample.wav')
sf.write(audio_sample, sample, 44100)
return audio_sample
def verify_audio(self, audio_file, is_process=True, sample_path=None):
is_good = False
error_data = ''
if os.path.isfile(audio_file):
try:
librosa.load(audio_file, duration=3, mono=False, sr=44100) if not type(sample_path) is str else self.create_sample(audio_file, sample_path)
is_good = True
except Exception as e:
error_name = f'{type(e).__name__}'
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'{error_name}: "{e}"\n{traceback_text}"'
if is_process:
audio_base_name = os.path.basename(audio_file)
self.error_log_var.set(f'Error Loading the Following File:\n\n\"{audio_base_name}\"\n\nRaw Error Details:\n\n{message}')
else:
error_data = AUDIO_VERIFICATION_CHECK(audio_file, message)
if is_process:
return is_good
else:
return is_good, error_data
def cached_sources_clear(self):
self.vr_cache_source_mapper = {}
self.mdx_cache_source_mapper = {}
self.demucs_cache_source_mapper = {}
def cached_model_source_holder(self, process_method, sources, model_name=None):
if process_method == VR_ARCH_TYPE:
self.vr_cache_source_mapper = {**self.vr_cache_source_mapper, **{model_name: sources}}
if process_method == MDX_ARCH_TYPE:
self.mdx_cache_source_mapper = {**self.mdx_cache_source_mapper, **{model_name: sources}}
if process_method == DEMUCS_ARCH_TYPE:
self.demucs_cache_source_mapper = {**self.demucs_cache_source_mapper, **{model_name: sources}}
def cached_source_callback(self, process_method, model_name=None):
model, sources = None, None
if process_method == VR_ARCH_TYPE:
mapper = self.vr_cache_source_mapper
if process_method == MDX_ARCH_TYPE:
mapper = self.mdx_cache_source_mapper
if process_method == DEMUCS_ARCH_TYPE:
mapper = self.demucs_cache_source_mapper
for key, value in mapper.items():
if model_name in key:
model = key
sources = value
return model, sources
def cached_source_model_list_check(self, model_list: List[ModelData]):
model: ModelData
primary_model_names = lambda process_method:[model.model_basename if model.process_method == process_method else None for model in model_list]
secondary_model_names = lambda process_method:[model.secondary_model.model_basename if model.is_secondary_model_activated and model.process_method == process_method else None for model in model_list]
self.vr_primary_model_names = primary_model_names(VR_ARCH_TYPE)
self.mdx_primary_model_names = primary_model_names(MDX_ARCH_TYPE)
self.demucs_primary_model_names = primary_model_names(DEMUCS_ARCH_TYPE)
self.vr_secondary_model_names = secondary_model_names(VR_ARCH_TYPE)
self.mdx_secondary_model_names = secondary_model_names(MDX_ARCH_TYPE)
self.demucs_secondary_model_names = [model.secondary_model.model_basename if model.is_secondary_model_activated and model.process_method == DEMUCS_ARCH_TYPE and not model.secondary_model is None else None for model in model_list]
self.demucs_pre_proc_model_name = [model.pre_proc_model.model_basename if model.pre_proc_model else None for model in model_list]#list(dict.fromkeys())
for model in model_list:
if model.process_method == DEMUCS_ARCH_TYPE and model.is_demucs_4_stem_secondaries:
if not model.is_4_stem_ensemble:
self.demucs_secondary_model_names = model.secondary_model_4_stem_model_names_list
break
else:
for i in model.secondary_model_4_stem_model_names_list:
self.demucs_secondary_model_names.append(i)
self.all_models = self.vr_primary_model_names + self.mdx_primary_model_names + self.demucs_primary_model_names + self.vr_secondary_model_names + self.mdx_secondary_model_names + self.demucs_secondary_model_names + self.demucs_pre_proc_model_name
def process(self, model_name, arch_type, audio_file, export_path, is_model_sample_mode=False, is_4_stem_ensemble=False, set_progress_func=None, console_write=print) -> SeperateAttributes:
stime = time.perf_counter()
time_elapsed = lambda:f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}'
if arch_type==ENSEMBLE_MODE:
model_list, ensemble = self.assemble_model_data(), Ensembler()
export_path = ensemble.ensemble_folder_name
is_ensemble = True
else:
model_list = self.assemble_model_data(model_name, arch_type)
is_ensemble = False
self.cached_source_model_list_check(model_list)
model = model_list[0]
if self.verify_audio(audio_file):
audio_file = self.create_sample(audio_file) if is_model_sample_mode else audio_file
else:
print(f'"{os.path.basename(audio_file)}\" is missing or currupted.\n')
exit()
audio_file_base = f"{os.path.splitext(os.path.basename(audio_file))[0]}"
audio_file_base = audio_file_base if is_ensemble else f"{round(time.time())}_{audio_file_base}"
audio_file_base = audio_file_base if not is_ensemble else f"{audio_file_base}_{model.model_basename}"
if not is_ensemble:
audio_file_base = f"{audio_file_base}_{model.model_basename}"
if not is_ensemble:
export_path = os.path.join(Path(export_path), model.model_basename, os.path.splitext(os.path.basename(audio_file))[0])
if not os.path.isdir(export_path):
os.makedirs(export_path)
if set_progress_func is None:
pbar = tqdm(total=1)
self._progress = 0
def set_progress_func(step, inference_iterations=0):
progress_curr = step + inference_iterations
pbar.update(progress_curr-self._progress)
self._progress = progress_curr
def postprocess():
pbar.close()
else:
def postprocess():
pass
process_data = {
'model_data': model,
'export_path': export_path,
'audio_file_base': audio_file_base,
'audio_file': audio_file,
'set_progress_bar': set_progress_func,
'write_to_console': lambda progress_text, base_text='': console_write(base_text + progress_text),
'process_iteration': lambda:None,
'cached_source_callback': self.cached_source_callback,
'cached_model_source_holder': self.cached_model_source_holder,
'list_all_models': self.all_models,
'is_ensemble_master': is_ensemble,
'is_4_stem_ensemble': is_ensemble and is_4_stem_ensemble
}
if model.process_method == VR_ARCH_TYPE:
seperator = SeperateVR(model, process_data)
if model.process_method == MDX_ARCH_TYPE:
seperator = SeperateMDX(model, process_data)
if model.process_method == DEMUCS_ARCH_TYPE:
seperator = SeperateDemucs(model, process_data)
seperator.seperate()
postprocess()
if is_ensemble:
audio_file_base = audio_file_base.replace(f"_{model.model_basename}", "")
console_write(ENSEMBLING_OUTPUTS)
if is_4_stem_ensemble:
for output_stem in DEMUCS_4_SOURCE_LIST:
ensemble.ensemble_outputs(audio_file_base, export_path, output_stem, is_4_stem=True)
else:
if not root.is_secondary_stem_only_var.get():
ensemble.ensemble_outputs(audio_file_base, export_path, PRIMARY_STEM)
if not root.is_primary_stem_only_var.get():
ensemble.ensemble_outputs(audio_file_base, export_path, SECONDARY_STEM)
ensemble.ensemble_outputs(audio_file_base, export_path, SECONDARY_STEM, is_inst_mix=True)
console_write(DONE)
if is_model_sample_mode:
if os.path.isfile(audio_file):
os.remove(audio_file)
torch.cuda.empty_cache()
if is_ensemble and len(os.listdir(export_path)) == 0:
shutil.rmtree(export_path)
console_write(f'Process Complete, using time: {time_elapsed()}\nOutput path: {export_path}')
self.cached_sources_clear()
return seperator
class RootWrapper:
def __init__(self, var) -> None:
self.var=var
def set(self, val):
self.var=val
def get(self):
return self.var
class FakeRoot:
def __init__(self) -> None:
self.wav_type_set = 'PCM_16'
self.vr_hash_MAPPER = load_model_hash_data(VR_HASH_JSON)
self.mdx_hash_MAPPER = load_model_hash_data(MDX_HASH_JSON)
self.mdx_name_select_MAPPER = load_model_hash_data(MDX_MODEL_NAME_SELECT)
self.demucs_name_select_MAPPER = load_model_hash_data(DEMUCS_MODEL_NAME_SELECT)
def __getattribute__(self, __name: str):
try:
return super().__getattribute__(__name)
except AttributeError:
wrapped=RootWrapper(None)
super().__setattr__(__name, wrapped)
return wrapped
def load_saved_settings(self, loaded_setting: dict, process_method=None):
"""Loads user saved application settings or resets to default"""
for key, value in DEFAULT_DATA.items():
if not key in loaded_setting.keys():
loaded_setting = {**loaded_setting, **{key:value}}
loaded_setting['batch_size'] = DEF_OPT
is_ensemble = True if process_method == ENSEMBLE_MODE else False
if not process_method or process_method == VR_ARCH_PM or is_ensemble:
self.vr_model_var.set(loaded_setting['vr_model'])
self.aggression_setting_var.set(loaded_setting['aggression_setting'])
self.window_size_var.set(loaded_setting['window_size'])
self.batch_size_var.set(loaded_setting['batch_size'])
self.crop_size_var.set(loaded_setting['crop_size'])
self.is_tta_var.set(loaded_setting['is_tta'])
self.is_output_image_var.set(loaded_setting['is_output_image'])
self.is_post_process_var.set(loaded_setting['is_post_process'])
self.is_high_end_process_var.set(loaded_setting['is_high_end_process'])
self.post_process_threshold_var.set(loaded_setting['post_process_threshold'])
self.vr_voc_inst_secondary_model_var.set(loaded_setting['vr_voc_inst_secondary_model'])
self.vr_other_secondary_model_var.set(loaded_setting['vr_other_secondary_model'])
self.vr_bass_secondary_model_var.set(loaded_setting['vr_bass_secondary_model'])
self.vr_drums_secondary_model_var.set(loaded_setting['vr_drums_secondary_model'])
self.vr_is_secondary_model_activate_var.set(loaded_setting['vr_is_secondary_model_activate'])
self.vr_voc_inst_secondary_model_scale_var.set(loaded_setting['vr_voc_inst_secondary_model_scale'])
self.vr_other_secondary_model_scale_var.set(loaded_setting['vr_other_secondary_model_scale'])
self.vr_bass_secondary_model_scale_var.set(loaded_setting['vr_bass_secondary_model_scale'])
self.vr_drums_secondary_model_scale_var.set(loaded_setting['vr_drums_secondary_model_scale'])
if not process_method or process_method == DEMUCS_ARCH_TYPE or is_ensemble:
self.demucs_model_var.set(loaded_setting['demucs_model'])
self.segment_var.set(loaded_setting['segment'])
self.overlap_var.set(loaded_setting['overlap'])
self.shifts_var.set(loaded_setting['shifts'])
self.chunks_demucs_var.set(loaded_setting['chunks_demucs'])
self.margin_demucs_var.set(loaded_setting['margin_demucs'])
self.is_chunk_demucs_var.set(loaded_setting['is_chunk_demucs'])
self.is_chunk_mdxnet_var.set(loaded_setting['is_chunk_mdxnet'])
self.is_primary_stem_only_Demucs_var.set(loaded_setting['is_primary_stem_only_Demucs'])
self.is_secondary_stem_only_Demucs_var.set(loaded_setting['is_secondary_stem_only_Demucs'])
self.is_split_mode_var.set(loaded_setting['is_split_mode'])
self.is_demucs_combine_stems_var.set(loaded_setting['is_demucs_combine_stems'])
self.demucs_voc_inst_secondary_model_var.set(loaded_setting['demucs_voc_inst_secondary_model'])
self.demucs_other_secondary_model_var.set(loaded_setting['demucs_other_secondary_model'])
self.demucs_bass_secondary_model_var.set(loaded_setting['demucs_bass_secondary_model'])
self.demucs_drums_secondary_model_var.set(loaded_setting['demucs_drums_secondary_model'])
self.demucs_is_secondary_model_activate_var.set(loaded_setting['demucs_is_secondary_model_activate'])
self.demucs_voc_inst_secondary_model_scale_var.set(loaded_setting['demucs_voc_inst_secondary_model_scale'])
self.demucs_other_secondary_model_scale_var.set(loaded_setting['demucs_other_secondary_model_scale'])
self.demucs_bass_secondary_model_scale_var.set(loaded_setting['demucs_bass_secondary_model_scale'])
self.demucs_drums_secondary_model_scale_var.set(loaded_setting['demucs_drums_secondary_model_scale'])
self.demucs_stems_var.set(loaded_setting['demucs_stems'])
# self.update_stem_checkbox_labels(self.demucs_stems_var.get(), demucs=True)
self.demucs_pre_proc_model_var.set(data['demucs_pre_proc_model'])
self.is_demucs_pre_proc_model_activate_var.set(data['is_demucs_pre_proc_model_activate'])
self.is_demucs_pre_proc_model_inst_mix_var.set(data['is_demucs_pre_proc_model_inst_mix'])
if not process_method or process_method == MDX_ARCH_TYPE or is_ensemble:
self.mdx_net_model_var.set(loaded_setting['mdx_net_model'])
self.chunks_var.set(loaded_setting['chunks'])
self.margin_var.set(loaded_setting['margin'])
self.compensate_var.set(loaded_setting['compensate'])
self.is_denoise_var.set(loaded_setting['is_denoise'])
self.is_invert_spec_var.set(loaded_setting['is_invert_spec'])
self.is_mixer_mode_var.set(loaded_setting['is_mixer_mode'])
self.mdx_batch_size_var.set(loaded_setting['mdx_batch_size'])
self.mdx_voc_inst_secondary_model_var.set(loaded_setting['mdx_voc_inst_secondary_model'])
self.mdx_other_secondary_model_var.set(loaded_setting['mdx_other_secondary_model'])
self.mdx_bass_secondary_model_var.set(loaded_setting['mdx_bass_secondary_model'])
self.mdx_drums_secondary_model_var.set(loaded_setting['mdx_drums_secondary_model'])
self.mdx_is_secondary_model_activate_var.set(loaded_setting['mdx_is_secondary_model_activate'])
self.mdx_voc_inst_secondary_model_scale_var.set(loaded_setting['mdx_voc_inst_secondary_model_scale'])
self.mdx_other_secondary_model_scale_var.set(loaded_setting['mdx_other_secondary_model_scale'])
self.mdx_bass_secondary_model_scale_var.set(loaded_setting['mdx_bass_secondary_model_scale'])
self.mdx_drums_secondary_model_scale_var.set(loaded_setting['mdx_drums_secondary_model_scale'])
if not process_method or is_ensemble:
self.is_save_all_outputs_ensemble_var.set(loaded_setting['is_save_all_outputs_ensemble'])
self.is_append_ensemble_name_var.set(loaded_setting['is_append_ensemble_name'])
self.chosen_audio_tool_var.set(loaded_setting['chosen_audio_tool'])
self.choose_algorithm_var.set(loaded_setting['choose_algorithm'])
self.time_stretch_rate_var.set(loaded_setting['time_stretch_rate'])
self.pitch_rate_var.set(loaded_setting['pitch_rate'])
self.is_primary_stem_only_var.set(loaded_setting['is_primary_stem_only'])
self.is_secondary_stem_only_var.set(loaded_setting['is_secondary_stem_only'])
self.is_testing_audio_var.set(loaded_setting['is_testing_audio'])
self.is_add_model_name_var.set(loaded_setting['is_add_model_name'])
self.is_accept_any_input_var.set(loaded_setting["is_accept_any_input"])
self.is_task_complete_var.set(loaded_setting['is_task_complete'])
self.is_create_model_folder_var.set(loaded_setting['is_create_model_folder'])
self.mp3_bit_set_var.set(loaded_setting['mp3_bit_set'])
self.save_format_var.set(loaded_setting['save_format'])
self.wav_type_set_var.set(loaded_setting['wav_type_set'])
self.user_code_var.set(loaded_setting['user_code'])
self.is_gpu_conversion_var.set(loaded_setting['is_gpu_conversion'])
self.is_normalization_var.set(loaded_setting['is_normalization'])
self.help_hints_var.set(loaded_setting['help_hints_var'])
self.model_sample_mode_var.set(loaded_setting['model_sample_mode'])
self.model_sample_mode_duration_var.set(loaded_setting['model_sample_mode_duration'])
root = FakeRoot()
root.load_saved_settings(DEFAULT_DATA) |