File size: 4,156 Bytes
c2dad70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from torch import nn
import torch.nn.functional as F
from . import layers_new as layers

class BaseNet(nn.Module):

    def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
        super(BaseNet, self).__init__()
        self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
        self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
        self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
        self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
        self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)

        self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)

        self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
        self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
        self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
        self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
        self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)

    def __call__(self, x):
        e1 = self.enc1(x)
        e2 = self.enc2(e1)
        e3 = self.enc3(e2)
        e4 = self.enc4(e3)
        e5 = self.enc5(e4)

        h = self.aspp(e5)

        h = self.dec4(h, e4)
        h = self.dec3(h, e3)
        h = self.dec2(h, e2)
        h = torch.cat([h, self.lstm_dec2(h)], dim=1)
        h = self.dec1(h, e1)

        return h

class CascadedNet(nn.Module):

    def __init__(self, n_fft, nn_arch_size, nout=32, nout_lstm=128):
        super(CascadedNet, self).__init__()

        self.max_bin = n_fft // 2
        self.output_bin = n_fft // 2 + 1
        self.nin_lstm = self.max_bin // 2
        self.offset = 64
        nout = 64 if nn_arch_size == 218409 else nout

        self.stg1_low_band_net = nn.Sequential(
            BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
            layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0)
            )
        
        self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)

        self.stg2_low_band_net = nn.Sequential(
            BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
            layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0)
            )
        self.stg2_high_band_net = BaseNet(nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2)

        self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)

        self.out = nn.Conv2d(nout, 2, 1, bias=False)
        self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)

    def forward(self, x):
        x = x[:, :, :self.max_bin]

        bandw = x.size()[2] // 2
        l1_in = x[:, :, :bandw]
        h1_in = x[:, :, bandw:]
        l1 = self.stg1_low_band_net(l1_in)
        h1 = self.stg1_high_band_net(h1_in)
        aux1 = torch.cat([l1, h1], dim=2)

        l2_in = torch.cat([l1_in, l1], dim=1)
        h2_in = torch.cat([h1_in, h1], dim=1)
        l2 = self.stg2_low_band_net(l2_in)
        h2 = self.stg2_high_band_net(h2_in)
        aux2 = torch.cat([l2, h2], dim=2)

        f3_in = torch.cat([x, aux1, aux2], dim=1)
        f3 = self.stg3_full_band_net(f3_in)

        mask = torch.sigmoid(self.out(f3))
        mask = F.pad(
            input=mask,
            pad=(0, 0, 0, self.output_bin - mask.size()[2]),
            mode='replicate'
        )

        if self.training:
            aux = torch.cat([aux1, aux2], dim=1)
            aux = torch.sigmoid(self.aux_out(aux))
            aux = F.pad(
                input=aux,
                pad=(0, 0, 0, self.output_bin - aux.size()[2]),
                mode='replicate'
            )
            return mask, aux
        else:
            return mask

    def predict_mask(self, x):
        mask = self.forward(x)

        if self.offset > 0:
            mask = mask[:, :, :, self.offset:-self.offset]
            assert mask.size()[3] > 0

        return mask

    def predict(self, x):
        mask = self.forward(x)
        pred_mag = x * mask

        if self.offset > 0:
            pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
            assert pred_mag.size()[3] > 0

        return pred_mag