|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from . import layers |
|
|
|
class BaseASPPNet(nn.Module): |
|
|
|
def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)): |
|
super(BaseASPPNet, self).__init__() |
|
self.nn_architecture = nn_architecture |
|
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1) |
|
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1) |
|
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1) |
|
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1) |
|
|
|
if self.nn_architecture == 129605: |
|
self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1) |
|
self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations) |
|
self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1) |
|
else: |
|
self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations) |
|
|
|
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1) |
|
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1) |
|
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1) |
|
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1) |
|
|
|
def __call__(self, x): |
|
h, e1 = self.enc1(x) |
|
h, e2 = self.enc2(h) |
|
h, e3 = self.enc3(h) |
|
h, e4 = self.enc4(h) |
|
|
|
if self.nn_architecture == 129605: |
|
h, e5 = self.enc5(h) |
|
h = self.aspp(h) |
|
h = self.dec5(h, e5) |
|
else: |
|
h = self.aspp(h) |
|
|
|
h = self.dec4(h, e4) |
|
h = self.dec3(h, e3) |
|
h = self.dec2(h, e2) |
|
h = self.dec1(h, e1) |
|
|
|
return h |
|
|
|
def determine_model_capacity(n_fft_bins, nn_architecture): |
|
|
|
sp_model_arch = [31191, 33966, 129605] |
|
hp_model_arch = [123821, 123812] |
|
hp2_model_arch = [537238, 537227] |
|
|
|
if nn_architecture in sp_model_arch: |
|
model_capacity_data = [ |
|
(2, 16), |
|
(2, 16), |
|
(18, 8, 1, 1, 0), |
|
(8, 16), |
|
(34, 16, 1, 1, 0), |
|
(16, 32), |
|
(32, 2, 1), |
|
(16, 2, 1), |
|
(16, 2, 1), |
|
] |
|
|
|
if nn_architecture in hp_model_arch: |
|
model_capacity_data = [ |
|
(2, 32), |
|
(2, 32), |
|
(34, 16, 1, 1, 0), |
|
(16, 32), |
|
(66, 32, 1, 1, 0), |
|
(32, 64), |
|
(64, 2, 1), |
|
(32, 2, 1), |
|
(32, 2, 1), |
|
] |
|
|
|
if nn_architecture in hp2_model_arch: |
|
model_capacity_data = [ |
|
(2, 64), |
|
(2, 64), |
|
(66, 32, 1, 1, 0), |
|
(32, 64), |
|
(130, 64, 1, 1, 0), |
|
(64, 128), |
|
(128, 2, 1), |
|
(64, 2, 1), |
|
(64, 2, 1), |
|
] |
|
|
|
cascaded = CascadedASPPNet |
|
model = cascaded(n_fft_bins, model_capacity_data, nn_architecture) |
|
|
|
return model |
|
|
|
class CascadedASPPNet(nn.Module): |
|
|
|
def __init__(self, n_fft, model_capacity_data, nn_architecture): |
|
super(CascadedASPPNet, self).__init__() |
|
self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0]) |
|
self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1]) |
|
|
|
self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2]) |
|
self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3]) |
|
|
|
self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4]) |
|
self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5]) |
|
|
|
self.out = nn.Conv2d(*model_capacity_data[6], bias=False) |
|
self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False) |
|
self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False) |
|
|
|
self.max_bin = n_fft // 2 |
|
self.output_bin = n_fft // 2 + 1 |
|
|
|
self.offset = 128 |
|
|
|
def forward(self, x): |
|
mix = x.detach() |
|
x = x.clone() |
|
|
|
x = x[:, :, :self.max_bin] |
|
|
|
bandw = x.size()[2] // 2 |
|
aux1 = torch.cat([ |
|
self.stg1_low_band_net(x[:, :, :bandw]), |
|
self.stg1_high_band_net(x[:, :, bandw:]) |
|
], dim=2) |
|
|
|
h = torch.cat([x, aux1], dim=1) |
|
aux2 = self.stg2_full_band_net(self.stg2_bridge(h)) |
|
|
|
h = torch.cat([x, aux1, aux2], dim=1) |
|
h = self.stg3_full_band_net(self.stg3_bridge(h)) |
|
|
|
mask = torch.sigmoid(self.out(h)) |
|
mask = F.pad( |
|
input=mask, |
|
pad=(0, 0, 0, self.output_bin - mask.size()[2]), |
|
mode='replicate') |
|
|
|
if self.training: |
|
aux1 = torch.sigmoid(self.aux1_out(aux1)) |
|
aux1 = F.pad( |
|
input=aux1, |
|
pad=(0, 0, 0, self.output_bin - aux1.size()[2]), |
|
mode='replicate') |
|
aux2 = torch.sigmoid(self.aux2_out(aux2)) |
|
aux2 = F.pad( |
|
input=aux2, |
|
pad=(0, 0, 0, self.output_bin - aux2.size()[2]), |
|
mode='replicate') |
|
return mask * mix, aux1 * mix, aux2 * mix |
|
else: |
|
return mask |
|
|
|
def predict_mask(self, x): |
|
mask = self.forward(x) |
|
|
|
if self.offset > 0: |
|
mask = mask[:, :, :, self.offset:-self.offset] |
|
|
|
return mask |