|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
import math |
|
import random |
|
import math |
|
import platform |
|
import traceback |
|
from . import pyrb |
|
|
|
OPERATING_SYSTEM = platform.system() |
|
SYSTEM_ARCH = platform.platform() |
|
SYSTEM_PROC = platform.processor() |
|
ARM = 'arm' |
|
|
|
if OPERATING_SYSTEM == 'Windows': |
|
from pyrubberband import pyrb |
|
else: |
|
from . import pyrb |
|
|
|
if OPERATING_SYSTEM == 'Darwin': |
|
wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest" |
|
else: |
|
wav_resolution = "sinc_fastest" |
|
|
|
MAX_SPEC = 'Max Spec' |
|
MIN_SPEC = 'Min Spec' |
|
AVERAGE = 'Average' |
|
|
|
def crop_center(h1, h2): |
|
h1_shape = h1.size() |
|
h2_shape = h2.size() |
|
|
|
if h1_shape[3] == h2_shape[3]: |
|
return h1 |
|
elif h1_shape[3] < h2_shape[3]: |
|
raise ValueError('h1_shape[3] must be greater than h2_shape[3]') |
|
|
|
s_time = (h1_shape[3] - h2_shape[3]) // 2 |
|
e_time = s_time + h2_shape[3] |
|
h1 = h1[:, :, :, s_time:e_time] |
|
|
|
return h1 |
|
|
|
def preprocess(X_spec): |
|
X_mag = np.abs(X_spec) |
|
X_phase = np.angle(X_spec) |
|
|
|
return X_mag, X_phase |
|
|
|
def make_padding(width, cropsize, offset): |
|
left = offset |
|
roi_size = cropsize - offset * 2 |
|
if roi_size == 0: |
|
roi_size = cropsize |
|
right = roi_size - (width % roi_size) + left |
|
|
|
return left, right, roi_size |
|
|
|
def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False): |
|
if reverse: |
|
wave_left = np.flip(np.asfortranarray(wave[0])) |
|
wave_right = np.flip(np.asfortranarray(wave[1])) |
|
elif mid_side: |
|
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2) |
|
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1])) |
|
elif mid_side_b2: |
|
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5)) |
|
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5)) |
|
else: |
|
wave_left = np.asfortranarray(wave[0]) |
|
wave_right = np.asfortranarray(wave[1]) |
|
|
|
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length) |
|
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length) |
|
|
|
spec = np.asfortranarray([spec_left, spec_right]) |
|
|
|
return spec |
|
|
|
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False): |
|
import threading |
|
|
|
if reverse: |
|
wave_left = np.flip(np.asfortranarray(wave[0])) |
|
wave_right = np.flip(np.asfortranarray(wave[1])) |
|
elif mid_side: |
|
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2) |
|
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1])) |
|
elif mid_side_b2: |
|
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5)) |
|
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5)) |
|
else: |
|
wave_left = np.asfortranarray(wave[0]) |
|
wave_right = np.asfortranarray(wave[1]) |
|
|
|
def run_thread(**kwargs): |
|
global spec_left |
|
spec_left = librosa.stft(**kwargs) |
|
|
|
thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length}) |
|
thread.start() |
|
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length) |
|
thread.join() |
|
|
|
spec = np.asfortranarray([spec_left, spec_right]) |
|
|
|
return spec |
|
|
|
def normalize(wave, is_normalize=False): |
|
"""Save output music files""" |
|
maxv = np.abs(wave).max() |
|
if maxv > 1.0: |
|
print(f"\nNormalization Set {is_normalize}: Input above threshold for clipping. Max:{maxv}") |
|
if is_normalize: |
|
print(f"The result was normalized.") |
|
wave /= maxv |
|
else: |
|
print(f"The result was not normalized.") |
|
else: |
|
print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}") |
|
|
|
return wave |
|
|
|
def normalize_two_stem(wave, mix, is_normalize=False): |
|
"""Save output music files""" |
|
|
|
maxv = np.abs(wave).max() |
|
max_mix = np.abs(mix).max() |
|
|
|
if maxv > 1.0: |
|
print(f"\nNormalization Set {is_normalize}: Primary source above threshold for clipping. Max:{maxv}") |
|
print(f"\nNormalization Set {is_normalize}: Mixture above threshold for clipping. Max:{max_mix}") |
|
if is_normalize: |
|
print(f"The result was normalized.") |
|
wave /= maxv |
|
mix /= maxv |
|
else: |
|
print(f"The result was not normalized.") |
|
else: |
|
print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}") |
|
|
|
|
|
print(f"\nNormalization Set {is_normalize}: Primary source - Max:{np.abs(wave).max()}") |
|
print(f"\nNormalization Set {is_normalize}: Mixture - Max:{np.abs(mix).max()}") |
|
|
|
return wave, mix |
|
|
|
def combine_spectrograms(specs, mp): |
|
l = min([specs[i].shape[2] for i in specs]) |
|
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64) |
|
offset = 0 |
|
bands_n = len(mp.param['band']) |
|
|
|
for d in range(1, bands_n + 1): |
|
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start'] |
|
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l] |
|
offset += h |
|
|
|
if offset > mp.param['bins']: |
|
raise ValueError('Too much bins') |
|
|
|
|
|
if mp.param['pre_filter_start'] > 0: |
|
if bands_n == 1: |
|
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop']) |
|
else: |
|
gp = 1 |
|
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']): |
|
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0) |
|
gp = g |
|
spec_c[:, b, :] *= g |
|
|
|
return np.asfortranarray(spec_c) |
|
|
|
def spectrogram_to_image(spec, mode='magnitude'): |
|
if mode == 'magnitude': |
|
if np.iscomplexobj(spec): |
|
y = np.abs(spec) |
|
else: |
|
y = spec |
|
y = np.log10(y ** 2 + 1e-8) |
|
elif mode == 'phase': |
|
if np.iscomplexobj(spec): |
|
y = np.angle(spec) |
|
else: |
|
y = spec |
|
|
|
y -= y.min() |
|
y *= 255 / y.max() |
|
img = np.uint8(y) |
|
|
|
if y.ndim == 3: |
|
img = img.transpose(1, 2, 0) |
|
img = np.concatenate([ |
|
np.max(img, axis=2, keepdims=True), img |
|
], axis=2) |
|
|
|
return img |
|
|
|
def reduce_vocal_aggressively(X, y, softmask): |
|
v = X - y |
|
y_mag_tmp = np.abs(y) |
|
v_mag_tmp = np.abs(v) |
|
|
|
v_mask = v_mag_tmp > y_mag_tmp |
|
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf) |
|
|
|
return y_mag * np.exp(1.j * np.angle(y)) |
|
|
|
def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32): |
|
mask = y_mask |
|
|
|
try: |
|
if min_range < fade_size * 2: |
|
raise ValueError('min_range must be >= fade_size * 2') |
|
|
|
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0] |
|
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0]) |
|
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1]) |
|
artifact_idx = np.where(end_idx - start_idx > min_range)[0] |
|
weight = np.zeros_like(y_mask) |
|
if len(artifact_idx) > 0: |
|
start_idx = start_idx[artifact_idx] |
|
end_idx = end_idx[artifact_idx] |
|
old_e = None |
|
for s, e in zip(start_idx, end_idx): |
|
if old_e is not None and s - old_e < fade_size: |
|
s = old_e - fade_size * 2 |
|
|
|
if s != 0: |
|
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size) |
|
else: |
|
s -= fade_size |
|
|
|
if e != y_mask.shape[2]: |
|
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size) |
|
else: |
|
e += fade_size |
|
|
|
weight[:, :, s + fade_size:e - fade_size] = 1 |
|
old_e = e |
|
|
|
v_mask = 1 - y_mask |
|
y_mask += weight * v_mask |
|
|
|
mask = y_mask |
|
except Exception as e: |
|
error_name = f'{type(e).__name__}' |
|
traceback_text = ''.join(traceback.format_tb(e.__traceback__)) |
|
message = f'{error_name}: "{e}"\n{traceback_text}"' |
|
print('Post Process Failed: ', message) |
|
|
|
|
|
return mask |
|
|
|
def align_wave_head_and_tail(a, b): |
|
l = min([a[0].size, b[0].size]) |
|
|
|
return a[:l,:l], b[:l,:l] |
|
|
|
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse, clamp=False): |
|
spec_left = np.asfortranarray(spec[0]) |
|
spec_right = np.asfortranarray(spec[1]) |
|
|
|
wave_left = librosa.istft(spec_left, hop_length=hop_length) |
|
wave_right = librosa.istft(spec_right, hop_length=hop_length) |
|
|
|
if reverse: |
|
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)]) |
|
elif mid_side: |
|
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]) |
|
elif mid_side_b2: |
|
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)]) |
|
else: |
|
return np.asfortranarray([wave_left, wave_right]) |
|
|
|
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2): |
|
import threading |
|
|
|
spec_left = np.asfortranarray(spec[0]) |
|
spec_right = np.asfortranarray(spec[1]) |
|
|
|
def run_thread(**kwargs): |
|
global wave_left |
|
wave_left = librosa.istft(**kwargs) |
|
|
|
thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length}) |
|
thread.start() |
|
wave_right = librosa.istft(spec_right, hop_length=hop_length) |
|
thread.join() |
|
|
|
if reverse: |
|
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)]) |
|
elif mid_side: |
|
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]) |
|
elif mid_side_b2: |
|
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)]) |
|
else: |
|
return np.asfortranarray([wave_left, wave_right]) |
|
|
|
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None): |
|
bands_n = len(mp.param['band']) |
|
offset = 0 |
|
|
|
for d in range(1, bands_n + 1): |
|
bp = mp.param['band'][d] |
|
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex) |
|
h = bp['crop_stop'] - bp['crop_start'] |
|
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :] |
|
|
|
offset += h |
|
if d == bands_n: |
|
if extra_bins_h: |
|
max_bin = bp['n_fft'] // 2 |
|
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :] |
|
if bp['hpf_start'] > 0: |
|
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1) |
|
if bands_n == 1: |
|
wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']) |
|
else: |
|
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])) |
|
else: |
|
sr = mp.param['band'][d+1]['sr'] |
|
if d == 1: |
|
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop']) |
|
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type=wav_resolution) |
|
else: |
|
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1) |
|
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop']) |
|
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])) |
|
wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution) |
|
|
|
return wave |
|
|
|
def fft_lp_filter(spec, bin_start, bin_stop): |
|
g = 1.0 |
|
for b in range(bin_start, bin_stop): |
|
g -= 1 / (bin_stop - bin_start) |
|
spec[:, b, :] = g * spec[:, b, :] |
|
|
|
spec[:, bin_stop:, :] *= 0 |
|
|
|
return spec |
|
|
|
def fft_hp_filter(spec, bin_start, bin_stop): |
|
g = 1.0 |
|
for b in range(bin_start, bin_stop, -1): |
|
g -= 1 / (bin_start - bin_stop) |
|
spec[:, b, :] = g * spec[:, b, :] |
|
|
|
spec[:, 0:bin_stop+1, :] *= 0 |
|
|
|
return spec |
|
|
|
def mirroring(a, spec_m, input_high_end, mp): |
|
if 'mirroring' == a: |
|
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1) |
|
mirror = mirror * np.exp(1.j * np.angle(input_high_end)) |
|
|
|
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror) |
|
|
|
if 'mirroring2' == a: |
|
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1) |
|
mi = np.multiply(mirror, input_high_end * 1.7) |
|
|
|
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi) |
|
|
|
def adjust_aggr(mask, is_non_accom_stem, aggressiveness): |
|
aggr = aggressiveness['value'] |
|
|
|
if aggr != 0: |
|
if is_non_accom_stem: |
|
aggr = 1 - aggr |
|
|
|
aggr = [aggr, aggr] |
|
|
|
if aggressiveness['aggr_correction'] is not None: |
|
aggr[0] += aggressiveness['aggr_correction']['left'] |
|
aggr[1] += aggressiveness['aggr_correction']['right'] |
|
|
|
for ch in range(2): |
|
mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3) |
|
mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch]) |
|
|
|
|
|
|
|
|
|
return mask |
|
|
|
def stft(wave, nfft, hl): |
|
wave_left = np.asfortranarray(wave[0]) |
|
wave_right = np.asfortranarray(wave[1]) |
|
spec_left = librosa.stft(wave_left, nfft, hop_length=hl) |
|
spec_right = librosa.stft(wave_right, nfft, hop_length=hl) |
|
spec = np.asfortranarray([spec_left, spec_right]) |
|
|
|
return spec |
|
|
|
def istft(spec, hl): |
|
spec_left = np.asfortranarray(spec[0]) |
|
spec_right = np.asfortranarray(spec[1]) |
|
wave_left = librosa.istft(spec_left, hop_length=hl) |
|
wave_right = librosa.istft(spec_right, hop_length=hl) |
|
wave = np.asfortranarray([wave_left, wave_right]) |
|
|
|
return wave |
|
|
|
def spec_effects(wave, algorithm='Default', value=None): |
|
spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)] |
|
if algorithm == 'Min_Mag': |
|
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0]) |
|
wave = istft(v_spec_m,1024) |
|
elif algorithm == 'Max_Mag': |
|
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0]) |
|
wave = istft(v_spec_m,1024) |
|
elif algorithm == 'Default': |
|
wave = (wave[1] * value) + (wave[0] * (1-value)) |
|
elif algorithm == 'Invert_p': |
|
X_mag = np.abs(spec[0]) |
|
y_mag = np.abs(spec[1]) |
|
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag) |
|
v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0])) |
|
wave = istft(v_spec,1024) |
|
|
|
return wave |
|
|
|
def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024): |
|
wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length) |
|
|
|
if wave.ndim == 1: |
|
wave = np.asfortranarray([wave,wave]) |
|
|
|
return wave |
|
|
|
def wave_to_spectrogram_no_mp(wave): |
|
|
|
spec = librosa.stft(wave, n_fft=2048, hop_length=1024) |
|
|
|
if spec.ndim == 1: |
|
spec = np.asfortranarray([spec,spec]) |
|
|
|
return spec |
|
|
|
def invert_audio(specs, invert_p=True): |
|
|
|
ln = min([specs[0].shape[2], specs[1].shape[2]]) |
|
specs[0] = specs[0][:,:,:ln] |
|
specs[1] = specs[1][:,:,:ln] |
|
|
|
if invert_p: |
|
X_mag = np.abs(specs[0]) |
|
y_mag = np.abs(specs[1]) |
|
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag) |
|
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0])) |
|
else: |
|
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2) |
|
v_spec = specs[0] - specs[1] |
|
|
|
return v_spec |
|
|
|
def invert_stem(mixture, stem): |
|
|
|
mixture = wave_to_spectrogram_no_mp(mixture) |
|
stem = wave_to_spectrogram_no_mp(stem) |
|
output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem])) |
|
|
|
return -output.T |
|
|
|
def ensembling(a, specs): |
|
for i in range(1, len(specs)): |
|
if i == 1: |
|
spec = specs[0] |
|
|
|
ln = min([spec.shape[2], specs[i].shape[2]]) |
|
spec = spec[:,:,:ln] |
|
specs[i] = specs[i][:,:,:ln] |
|
|
|
if MIN_SPEC == a: |
|
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec) |
|
if MAX_SPEC == a: |
|
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec) |
|
if AVERAGE == a: |
|
spec = np.where(np.abs(specs[i]) == np.abs(spec), specs[i], spec) |
|
|
|
return spec |
|
|
|
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path): |
|
|
|
wavs_ = [] |
|
|
|
if algorithm == AVERAGE: |
|
output = average_audio(audio_input) |
|
samplerate = 44100 |
|
else: |
|
specs = [] |
|
|
|
for i in range(len(audio_input)): |
|
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100) |
|
wavs_.append(wave) |
|
spec = wave_to_spectrogram_no_mp(wave) |
|
specs.append(spec) |
|
|
|
wave_shapes = [w.shape[1] for w in wavs_] |
|
target_shape = wavs_[wave_shapes.index(max(wave_shapes))] |
|
|
|
output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs)) |
|
output = to_shape(output, target_shape.shape) |
|
|
|
sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set) |
|
|
|
def to_shape(x, target_shape): |
|
padding_list = [] |
|
for x_dim, target_dim in zip(x.shape, target_shape): |
|
pad_value = (target_dim - x_dim) |
|
pad_tuple = ((0, pad_value)) |
|
padding_list.append(pad_tuple) |
|
|
|
return np.pad(x, tuple(padding_list), mode='constant') |
|
|
|
def to_shape_minimize(x: np.ndarray, target_shape): |
|
|
|
padding_list = [] |
|
for x_dim, target_dim in zip(x.shape, target_shape): |
|
pad_value = (target_dim - x_dim) |
|
pad_tuple = ((0, pad_value)) |
|
padding_list.append(pad_tuple) |
|
|
|
return np.pad(x, tuple(padding_list), mode='constant') |
|
|
|
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False): |
|
|
|
wav, sr = librosa.load(audio_file, sr=44100, mono=False) |
|
|
|
if wav.ndim == 1: |
|
wav = np.asfortranarray([wav,wav]) |
|
|
|
if is_pitch: |
|
wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None) |
|
wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None) |
|
else: |
|
wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None) |
|
wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None) |
|
|
|
if wav_1.shape > wav_2.shape: |
|
wav_2 = to_shape(wav_2, wav_1.shape) |
|
if wav_1.shape < wav_2.shape: |
|
wav_1 = to_shape(wav_1, wav_2.shape) |
|
|
|
wav_mix = np.asfortranarray([wav_1, wav_2]) |
|
|
|
sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set) |
|
save_format(export_path) |
|
|
|
def average_audio(audio): |
|
|
|
waves = [] |
|
wave_shapes = [] |
|
final_waves = [] |
|
|
|
for i in range(len(audio)): |
|
wave = librosa.load(audio[i], sr=44100, mono=False) |
|
waves.append(wave[0]) |
|
wave_shapes.append(wave[0].shape[1]) |
|
|
|
wave_shapes_index = wave_shapes.index(max(wave_shapes)) |
|
target_shape = waves[wave_shapes_index] |
|
waves.pop(wave_shapes_index) |
|
final_waves.append(target_shape) |
|
|
|
for n_array in waves: |
|
wav_target = to_shape(n_array, target_shape.shape) |
|
final_waves.append(wav_target) |
|
|
|
waves = sum(final_waves) |
|
waves = waves/len(audio) |
|
|
|
return waves |
|
|
|
def average_dual_sources(wav_1, wav_2, value): |
|
|
|
if wav_1.shape > wav_2.shape: |
|
wav_2 = to_shape(wav_2, wav_1.shape) |
|
if wav_1.shape < wav_2.shape: |
|
wav_1 = to_shape(wav_1, wav_2.shape) |
|
|
|
wave = (wav_1 * value) + (wav_2 * (1-value)) |
|
|
|
return wave |
|
|
|
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray): |
|
|
|
if wav_1.shape > wav_2.shape: |
|
wav_2 = to_shape(wav_2, wav_1.shape) |
|
if wav_1.shape < wav_2.shape: |
|
ln = min([wav_1.shape[1], wav_2.shape[1]]) |
|
wav_2 = wav_2[:,:ln] |
|
|
|
ln = min([wav_1.shape[1], wav_2.shape[1]]) |
|
wav_1 = wav_1[:,:ln] |
|
wav_2 = wav_2[:,:ln] |
|
|
|
return wav_2 |
|
|
|
def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_normalization, command_Text, progress_bar_main_var, save_format): |
|
def get_diff(a, b): |
|
corr = np.correlate(a, b, "full") |
|
diff = corr.argmax() - (b.shape[0] - 1) |
|
return diff |
|
|
|
progress_bar_main_var.set(10) |
|
|
|
|
|
wav1, sr1 = librosa.load(file1, sr=44100, mono=False) |
|
wav2, sr2 = librosa.load(file2, sr=44100, mono=False) |
|
wav1 = wav1.transpose() |
|
wav2 = wav2.transpose() |
|
|
|
command_Text(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n") |
|
|
|
wav2_org = wav2.copy() |
|
progress_bar_main_var.set(20) |
|
|
|
command_Text("Processing files... \n") |
|
|
|
|
|
|
|
counts = {} |
|
progress = 20 |
|
|
|
check_range = 64 |
|
|
|
base = (64 / check_range) |
|
|
|
for i in range(check_range): |
|
index = int(random.uniform(44100 * 2, min(wav1.shape[0], wav2.shape[0]) - 44100 * 2)) |
|
shift = int(random.uniform(-22050,+22050)) |
|
samp1 = wav1[index :index +44100, 0] |
|
samp2 = wav2[index+shift:index+shift+44100, 0] |
|
progress += 1 * base |
|
progress_bar_main_var.set(progress) |
|
diff = get_diff(samp1, samp2) |
|
diff -= shift |
|
|
|
if abs(diff) < 22050: |
|
if not diff in counts: |
|
counts[diff] = 0 |
|
counts[diff] += 1 |
|
|
|
|
|
max_count = 0 |
|
est_diff = 0 |
|
for diff in counts.keys(): |
|
if counts[diff] > max_count: |
|
max_count = counts[diff] |
|
est_diff = diff |
|
|
|
command_Text(f"Estimated difference is {est_diff} (count: {max_count})\n") |
|
|
|
progress_bar_main_var.set(90) |
|
|
|
audio_files = [] |
|
|
|
def save_aligned_audio(wav2_aligned): |
|
command_Text(f"Aligned File 2 with File 1.\n") |
|
command_Text(f"Saving files... ") |
|
sf.write(file2_aligned, normalize(wav2_aligned, is_normalization), sr2, subtype=wav_type_set) |
|
save_format(file2_aligned) |
|
min_len = min(wav1.shape[0], wav2_aligned.shape[0]) |
|
wav_sub = wav1[:min_len] - wav2_aligned[:min_len] |
|
audio_files.append(file2_aligned) |
|
return min_len, wav_sub |
|
|
|
|
|
if est_diff > 0: |
|
wav2_aligned = np.append(np.zeros((est_diff, 2)), wav2_org, axis=0) |
|
min_len, wav_sub = save_aligned_audio(wav2_aligned) |
|
elif est_diff < 0: |
|
wav2_aligned = wav2_org[-est_diff:] |
|
min_len, wav_sub = save_aligned_audio(wav2_aligned) |
|
else: |
|
command_Text(f"Audio files already aligned.\n") |
|
command_Text(f"Saving inverted track... ") |
|
min_len = min(wav1.shape[0], wav2.shape[0]) |
|
wav_sub = wav1[:min_len] - wav2[:min_len] |
|
|
|
wav_sub = np.clip(wav_sub, -1, +1) |
|
|
|
sf.write(file_subtracted, normalize(wav_sub, is_normalization), sr1, subtype=wav_type_set) |
|
save_format(file_subtracted) |
|
|
|
progress_bar_main_var.set(95) |