|
|
|
|
|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
HF_TOKEN = os.environ['HF_TOKEN'] |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
if torch.cuda.is_available(): |
|
model_id = "Rijgersberg/GEITje-7B-chat" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.06, |
|
top_p: float = 0.95, |
|
top_k: int = 40, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
conversation = [] |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
chatbot=gr.Chatbot(height=400), |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0., |
|
maximum=1.2, |
|
step=0.05, |
|
value=0.2, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
examples=[ |
|
["""Welk woord hoort er niet in dit rijtje thuis: "auto, vliegtuig, geit, bus"?"""], |
|
["Schrijf een nieuwsbericht voor De Speld over de inzet van een kudde geiten door het Nederlands Forensisch Instituut"], |
|
["Wat zijn 3 leuke dingen om te doen als ik een weekendje naar Friesland ga?"], |
|
["Kan je naar de maan fietsen?"], |
|
["Wat is het belang van open source taalmodellen?"], |
|
], |
|
title="π GEITje 7B Chat π", |
|
description="""Een eerste chatbot op basis van GEITje 7B: een groot open Nederlands taalmodel. Gemaakt voor demonstratiedoeleinden. |
|
|
|
Generatieve taalmodellen maken fouten, controleer daarom feiten voordat je ze overneemt. GEITje Chat is niet uitgebreid getraind om _gealigned_ te zijn met menselijke waarden. Het is daarom mogelijk dat het problematische output genereert, zeker als het daartoe _geprompt_ wordt. |
|
|
|
Voor meer info over GEITje: zie de <a href="https://github.com/Rijgersberg/GEITje">π README op GitHub</a>.""", |
|
submit_btn="Genereer", |
|
stop_btn="Stop", |
|
retry_btn="π Opnieuw", |
|
undo_btn="β©οΈ Ongedaan maken", |
|
clear_btn="ποΈ Wissen", |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
chat_interface.render() |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|