Spaces:
Sleeping
Sleeping
File size: 14,481 Bytes
3b057c5 deef83a 3b057c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import gradio as gr
from helper.examples.examples import DemoImages
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader
model_loader = SingletonModelLoader()
custom_track = CustomTrack(model_loader)
images_for_demo = DemoImages()
with gr.Blocks() as stepwise_htr_tool_tab:
with gr.Tabs():
with gr.Tab("1. Region Segmentation"):
with gr.Row():
with gr.Column(scale=2):
vis_data_folder_placeholder = gr.Markdown(visible=False)
name_files_placeholder = gr.Markdown(visible=False)
with gr.Row():
input_region_image = gr.Image(
label="Image to Region segment",
# type="numpy",
tool="editor",
).style(height=350)
with gr.Accordion("Region segment settings:", open=False):
with gr.Row():
reg_pred_score_threshold_slider = gr.Slider(
minimum=0.4,
maximum=1,
value=0.5,
step=0.05,
label="P-threshold",
info="""Filter and determine the confidence score
required for a prediction score to be considered""",
)
reg_containments_threshold_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.05,
label="C-threshold",
info="""The minimum required overlap or similarity
for a detected region or object to be considered valid""",
)
with gr.Row():
region_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/RmtDet_region"],
value="Riksarkivet/RmtDet_region",
label="Region segment model",
info="Will add more models later!",
)
with gr.Row():
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
region_segment_button = gr.Button(
"Segment Region",
variant="primary",
elem_id="region_segment_button",
) # .style(full_width=False)
with gr.Row():
with gr.Accordion("Example images to use:", open=False) as example_accord:
gr.Examples(
examples=images_for_demo.examples_list,
inputs=[name_files_placeholder, input_region_image],
label="Example images",
examples_per_page=5,
)
with gr.Column(scale=3):
output_region_image = gr.Image(label="Segmented regions", type="numpy").style(height=600)
##############################################
with gr.Tab("2. Line Segmentation"):
image_placeholder_lines = gr.Image(
label="Segmented lines",
# type="numpy",
interactive="False",
visible=True,
).style(height=600)
with gr.Row(visible=False) as control_line_segment:
with gr.Column(scale=2):
with gr.Box():
regions_cropped_gallery = gr.Gallery(
label="Segmented regions",
show_label=False,
elem_id="gallery",
).style(
columns=[2],
rows=[2],
# object_fit="contain",
height=400,
preview=True,
container=False,
)
input_region_from_gallery = gr.Image(
label="Region segmentation to line segment", interactive="False", visible=False
).style(height=400)
with gr.Row():
with gr.Accordion("Line segment settings:", open=False):
with gr.Row():
line_pred_score_threshold_slider = gr.Slider(
minimum=0.3,
maximum=1,
value=0.4,
step=0.05,
label="Pred_score threshold",
info="""Filter and determine the confidence score
required for a prediction score to be considered""",
)
line_containments_threshold_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.05,
label="Containments threshold",
info="""The minimum required overlap or similarity
for a detected region or object to be considered valid""",
)
with gr.Row().style(equal_height=False):
line_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/RmtDet_lines"],
value="Riksarkivet/RmtDet_lines",
label="Line segment model",
info="Will add more models later!",
)
with gr.Row():
clear_line_segment_button = gr.Button(
" ",
variant="Secondary",
# elem_id="center_button",
).style(full_width=True)
line_segment_button = gr.Button(
"Segment Lines",
variant="primary",
# elem_id="center_button",
).style(full_width=True)
with gr.Column(scale=3):
# gr.Markdown("""lorem ipsum""")
output_line_from_region = gr.Image(
label="Segmented lines",
type="numpy",
interactive="False",
).style(height=600)
###############################################
with gr.Tab("3. Transcribe Text"):
image_placeholder_htr = gr.Image(
label="Transcribed lines",
# type="numpy",
interactive="False",
visible=True,
).style(height=600)
with gr.Row(visible=False) as control_htr:
inputs_lines_to_transcribe = gr.Variable()
with gr.Column(scale=2):
image_inputs_lines_to_transcribe = gr.Image(
label="Transcribed lines",
type="numpy",
interactive="False",
visible=False,
).style(height=470)
with gr.Row():
with gr.Accordion("Transcribe settings:", open=False):
transcriber_model = gr.Dropdown(
choices=["Riksarkivet/SATRN_transcriber", "microsoft/trocr-base-handwritten"],
value="Riksarkivet/SATRN_transcriber",
label="Transcriber model",
info="Will add more models later!",
)
with gr.Row():
clear_transcribe_button = gr.Button(" ", variant="Secondary", visible=True).style(
full_width=True
)
transcribe_button = gr.Button("Transcribe lines", variant="primary", visible=True).style(
full_width=True
)
donwload_txt_button = gr.Button("Download text", variant="secondary", visible=False).style(
full_width=True
)
with gr.Row():
txt_file_downlod = gr.File(label="Download text", visible=False)
with gr.Column(scale=3):
with gr.Row():
transcribed_text_df = gr.Dataframe(
headers=["Transcribed text"],
max_rows=15,
col_count=(1, "fixed"),
wrap=True,
interactive=False,
overflow_row_behaviour="paginate",
).style(height=600)
#####################################
with gr.Tab("4. Explore Results"):
image_placeholder_explore_results = gr.Image(
label="Cropped transcribed lines",
# type="numpy",
interactive="False",
visible=True,
).style(height=600)
with gr.Row(visible=False) as control_results_transcribe:
with gr.Column(scale=1, visible=True):
with gr.Box():
temp_gallery_input = gr.Variable()
gallery_inputs_lines_to_transcribe = gr.Gallery(
label="Cropped transcribed lines",
show_label=True,
elem_id="gallery_lines",
).style(
columns=[3],
rows=[3],
# object_fit="contain",
# height="600",
preview=True,
container=False,
)
with gr.Column(scale=1, visible=True):
mapping_dict = gr.Variable()
transcribed_text_df_finish = gr.Dataframe(
headers=["Transcribed text", "HTR prediction score"],
max_rows=15,
col_count=(2, "fixed"),
wrap=True,
interactive=False,
overflow_row_behaviour="paginate",
).style(height=600)
# custom track
region_segment_button.click(
custom_track.region_segment,
inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider],
outputs=[output_region_image, regions_cropped_gallery, image_placeholder_lines, control_line_segment],
)
regions_cropped_gallery.select(
custom_track.get_select_index_image, regions_cropped_gallery, input_region_from_gallery
)
transcribed_text_df_finish.select(
fn=custom_track.get_select_index_df,
inputs=[transcribed_text_df_finish, mapping_dict],
outputs=gallery_inputs_lines_to_transcribe,
)
line_segment_button.click(
custom_track.line_segment,
inputs=[input_region_from_gallery, line_pred_score_threshold_slider, line_containments_threshold_slider],
outputs=[
output_line_from_region,
image_inputs_lines_to_transcribe,
inputs_lines_to_transcribe,
gallery_inputs_lines_to_transcribe,
temp_gallery_input,
# Hide
transcribe_button,
image_inputs_lines_to_transcribe,
image_placeholder_htr,
control_htr,
],
)
transcribe_button.click(
custom_track.transcribe_text,
inputs=[transcribed_text_df, inputs_lines_to_transcribe],
outputs=[
transcribed_text_df,
transcribed_text_df_finish,
mapping_dict,
txt_file_downlod,
control_results_transcribe,
image_placeholder_explore_results,
],
)
donwload_txt_button.click(
custom_track.download_df_to_txt,
inputs=transcribed_text_df,
outputs=[txt_file_downlod, txt_file_downlod],
)
# def remove_temp_vis():
# if os.path.exists("./vis_data"):
# os.remove("././vis_data")
# return None
clear_button.click(
lambda: (
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
None,
None,
None,
gr.update(visible=False),
None,
None,
None,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
None,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=[],
outputs=[
vis_data_folder_placeholder,
input_region_image,
regions_cropped_gallery,
input_region_from_gallery,
control_line_segment,
output_line_from_region,
inputs_lines_to_transcribe,
transcribed_text_df,
control_htr,
inputs_lines_to_transcribe,
image_placeholder_htr,
output_region_image,
image_inputs_lines_to_transcribe,
control_results_transcribe,
image_placeholder_explore_results,
image_placeholder_lines,
],
)
|