Spaces:
Sleeping
Sleeping
File size: 8,836 Bytes
c9a1c2d 089249c c9a1c2d 089249c c9a1c2d 089249c 43c84d4 089249c 76f8319 089249c 76f8319 089249c 43c84d4 76f8319 089249c 43c84d4 76f8319 089249c 43c84d4 76f8319 089249c c9a1c2d 089249c c9a1c2d deef83a c9a1c2d 089249c c9a1c2d 089249c c9a1c2d 089249c c9a1c2d 089249c c9a1c2d 089249c 14d4a0b 089249c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import gradio as gr
from helper.examples.examples import DemoImages
from src.htr_pipeline.gradio_backend import FastTrack, SingletonModelLoader
model_loader = SingletonModelLoader()
fast_track = FastTrack(model_loader)
images_for_demo = DemoImages()
terminate = False
with gr.Blocks() as htr_tool_tab:
with gr.Row(equal_height=True):
with gr.Column(scale=2):
with gr.Row():
fast_track_input_region_image = gr.Image(
label="Image to run HTR on", type="numpy", tool="editor", elem_id="image_upload", height=395
)
with gr.Row():
with gr.Tab("Output and Settings") as tab_output_and_setting_selector:
with gr.Row():
stop_htr_button = gr.Button(
value="Stop HTR",
variant="stop",
)
htr_pipeline_button = gr.Button(
"Run HTR",
variant="primary",
visible=True,
elem_id="run_pipeline_button",
)
htr_pipeline_button_api = gr.Button("Run pipeline", variant="primary", visible=False, scale=1)
fast_file_downlod = gr.File(
label="Download output file", visible=True, scale=1, height=100, elem_id="download_file"
)
with gr.Tab("Image Viewer") as tab_image_viewer_selector:
with gr.Row():
gr.Button(
value="External Image Viewer",
variant="secondary",
link="https://huggingface.co/spaces/Riksarkivet/Viewer_demo",
interactive=True,
)
run_image_visualizer_button = gr.Button(
value="Visualize results", variant="primary", interactive=True
)
selection_text_from_image_viewer = gr.Textbox(
interactive=False, label="Text Selector", info="Select a mask on Image Viewer to return text"
)
with gr.Column(scale=4):
with gr.Box():
with gr.Row(visible=True) as output_and_setting_tab:
with gr.Column(scale=3):
with gr.Row():
with gr.Group():
gr.Markdown(" ⚙️ Settings ")
with gr.Row():
radio_file_input = gr.CheckboxGroup(
choices=["Txt", "XML"],
value=["Txt", "XML"],
label="Output file extension",
# info="Only txt and page xml is supported for now!",
scale=1,
)
with gr.Row():
gr.Checkbox(
value=True,
label="Binarize image",
info="Binarize image to reduce background noise",
)
gr.Checkbox(
value=True,
label="Output prediction threshold",
info="Output XML with prediction score",
)
with gr.Row():
gr.Slider(
value=0.6,
minimum=0.5,
maximum=1,
label="HTR threshold",
info="Prediction score threshold for transcribed lines",
scale=1,
)
gr.Slider(
value=0.7,
minimum=0.6,
maximum=1,
label="Avg threshold",
info="Average prediction score for a region",
scale=1,
)
htr_tool_region_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/rtmdet_region"],
value="Riksarkivet/rtmdet_region",
label="Region Segment models",
info="Will add more models later!",
)
# with gr.Accordion("Transcribe settings:", open=False):
htr_tool_line_segment_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/rtmdet_lines"],
value="Riksarkivet/rtmdet_lines",
label="Line Segment models",
info="Will add more models later!",
)
htr_tool_transcriber_model_dropdown = gr.Dropdown(
choices=["Riksarkivet/satrn_htr", "microsoft/trocr-base-handwritten"],
value="Riksarkivet/satrn_htr",
label="Transcriber models",
info="Models will be continuously updated with future additions for specific cases.",
)
with gr.Column(scale=2):
fast_name_files_placeholder = gr.Markdown(visible=False)
gr.Examples(
examples=images_for_demo.examples_list,
inputs=[fast_name_files_placeholder, fast_track_input_region_image],
label="Example images",
examples_per_page=5,
)
with gr.Row(visible=False) as image_viewer_tab:
text_polygon_dict = gr.Variable()
fast_track_output_image = gr.Image(
label="Image Viewer", type="numpy", height=600, interactive=False
)
xml_rendered_placeholder_for_api = gr.Textbox(visible=False)
htr_event_click_event = htr_pipeline_button.click(
fast_track.segment_to_xml,
inputs=[fast_track_input_region_image, radio_file_input],
outputs=[fast_file_downlod, fast_file_downlod],
)
htr_pipeline_button_api.click(
fast_track.segment_to_xml_api,
inputs=[fast_track_input_region_image],
outputs=[xml_rendered_placeholder_for_api],
api_name="predict",
)
def dummy_update_htr_tool_transcriber_model_dropdown(htr_tool_transcriber_model_dropdown):
return gr.update(value="Riksarkivet/satrn_htr")
htr_tool_transcriber_model_dropdown.change(
fn=dummy_update_htr_tool_transcriber_model_dropdown,
inputs=htr_tool_transcriber_model_dropdown,
outputs=htr_tool_transcriber_model_dropdown,
)
def update_selected_tab_output_and_setting():
return gr.update(visible=True), gr.update(visible=False)
def update_selected_tab_image_viewer():
return gr.update(visible=False), gr.update(visible=True)
tab_output_and_setting_selector.select(
fn=update_selected_tab_output_and_setting, outputs=[output_and_setting_tab, image_viewer_tab]
)
tab_image_viewer_selector.select(
fn=update_selected_tab_image_viewer, outputs=[output_and_setting_tab, image_viewer_tab]
)
def stop_function():
from src.htr_pipeline.utils import pipeline_inferencer
pipeline_inferencer.terminate = True
gr.Info("The HTR execution was halted")
stop_htr_button.click(fn=stop_function, inputs=None, outputs=None, cancels=[htr_event_click_event])
run_image_visualizer_button.click(
fn=fast_track.visualize_image_viewer,
inputs=fast_track_input_region_image,
outputs=[fast_track_output_image, text_polygon_dict],
)
fast_track_output_image.select(
fast_track.get_text_from_coords, inputs=text_polygon_dict, outputs=selection_text_from_image_viewer
)
|