import os import re from datetime import datetime import jinja2 from tqdm import tqdm from src.htr_pipeline.inferencer import InferencerInterface from src.htr_pipeline.utils.process_segmask import SegMaskHelper class XMLHelper: def __init__(self): self.process_seg_mask = SegMaskHelper() def image_to_page_xml( self, image, pred_score_threshold_regions, pred_score_threshold_lines, containments_threshold, inferencer: InferencerInterface, xml_file_name="page_xml.xml", ): img_height = image.shape[0] img_width = image.shape[1] img_file_name = xml_file_name template_data = self.prepare_template_data(img_file_name, img_width, img_height) template_data["textRegions"] = self._process_regions( image, inferencer, pred_score_threshold_regions, pred_score_threshold_lines, containments_threshold, ) rendered_xml = self._render_xml(template_data) return rendered_xml def _transform_coords(self, input_string): pattern = r"\[\s*([^\s,]+)\s*,\s*([^\s\]]+)\s*\]" replacement = r"\1,\2" return re.sub(pattern, replacement, input_string) def _render_xml(self, template_data): template_loader = jinja2.FileSystemLoader(searchpath="./src/htr_pipeline/utils/templates") template_env = jinja2.Environment(loader=template_loader, trim_blocks=True) template = template_env.get_template("page_xml_2013.xml") rendered_xml = template.render(template_data) rendered_xml = self._transform_coords(rendered_xml) return rendered_xml def prepare_template_data(self, img_file_name, img_width, img_height): now = datetime.now() date_time = now.strftime("%Y-%m-%d, %H:%M:%S") return { "created": date_time, "imageFilename": img_file_name, "imageWidth": img_width, "imageHeight": img_height, "textRegions": list(), } def _process_regions( self, image, inferencer: InferencerInterface, pred_score_threshold_regions, pred_score_threshold_lines, containments_threshold, htr_threshold=0.7, ): _, regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered = inferencer.predict_regions( image, pred_score_threshold=pred_score_threshold_regions, containments_threshold=containments_threshold, visualize=False, ) region_data_list = [] for i, (text_region, reg_pol, mask) in tqdm( enumerate(zip(regions_cropped_ordered, reg_polygons_ordered, reg_masks_ordered)) ): region_id = "region_" + str(i) region_data = dict() region_data["id"] = region_id region_data["boundary"] = reg_pol text_lines, htr_scores = self._process_lines( text_region, inferencer, pred_score_threshold_lines, containments_threshold, mask, region_id, ) if text_lines is None: continue region_data["textLines"] = text_lines mean_htr_score = sum(htr_scores) / len(htr_scores) if mean_htr_score > htr_threshold: region_data_list.append(region_data) return region_data_list def _process_lines( self, text_region, inferencer: InferencerInterface, pred_score_threshold_lines, containments_threshold, mask, region_id, htr_threshold=0.7, ): _, lines_cropped_ordered, line_polygons_ordered = inferencer.predict_lines( text_region, pred_score_threshold=pred_score_threshold_lines, containments_threshold=containments_threshold, visualize=False, custom_track=False, ) if lines_cropped_ordered is None: return None, None line_polygons_ordered_trans = self.process_seg_mask._translate_line_coords(mask, line_polygons_ordered) htr_scores = list() text_lines = list() for j, (line, line_pol) in enumerate(zip(lines_cropped_ordered, line_polygons_ordered_trans)): line_id = "line_" + region_id + "_" + str(j) line_data = dict() line_data["id"] = line_id line_data["boundary"] = line_pol line_data["unicode"], htr_score = inferencer.transcribe(line) htr_scores.append(htr_score) if htr_score > htr_threshold: text_lines.append(line_data) return text_lines, htr_scores