File size: 6,619 Bytes
91aeb7f
 
4e322c2
 
 
 
91aeb7f
 
 
 
 
 
 
 
 
 
 
 
4e322c2
 
 
 
 
 
 
 
 
 
 
 
 
 
91aeb7f
 
 
 
 
 
4e322c2
91aeb7f
4e322c2
 
 
 
 
 
 
 
 
 
 
81e5563
91aeb7f
4e322c2
91aeb7f
 
 
 
 
 
4e322c2
91aeb7f
 
4e322c2
 
91aeb7f
4e322c2
91aeb7f
 
 
 
 
 
 
 
 
 
 
 
4e322c2
91aeb7f
4e322c2
 
 
 
91aeb7f
4e322c2
91aeb7f
4e322c2
 
91aeb7f
 
4e322c2
91aeb7f
4e322c2
 
91aeb7f
4e322c2
 
 
 
 
 
 
 
91aeb7f
 
 
 
 
 
 
 
 
 
 
4e322c2
91aeb7f
 
4e322c2
91aeb7f
 
 
4e322c2
91aeb7f
 
 
 
 
 
4e322c2
91aeb7f
 
 
 
 
 
 
 
4e322c2
 
 
 
 
 
 
 
 
 
 
 
 
91aeb7f
 
 
4e322c2
91aeb7f
4e322c2
91aeb7f
a1955ce
91aeb7f
4e322c2
91aeb7f
4e322c2
 
 
 
 
91aeb7f
4e322c2
81e5563
a1955ce
81e5563
a1955ce
4e322c2
91aeb7f
6cea54a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from dotenv import load_dotenv
import asyncio
from flask import Flask, request, render_template
from flask_cors import CORS
from flask_socketio import SocketIO, emit, join_room, leave_room
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from pinecone import Pinecone
from pinecone_text.sparse import BM25Encoder
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.retrievers import PineconeHybridSearchRetriever
from langchain_groq import ChatGroq

# Load environment variables
load_dotenv(".env")
USER_AGENT = os.getenv("USER_AGENT")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
SECRET_KEY = os.getenv("SECRET_KEY")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
SESSION_ID_DEFAULT = "abc123"

# Set environment variables
os.environ['USER_AGENT'] = USER_AGENT
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["TOKENIZERS_PARALLELISM"] = 'true'

# Initialize Flask app and SocketIO with CORS
app = Flask(__name__)
CORS(app)
socketio = SocketIO(app, cors_allowed_origins="*")
app.config['SESSION_COOKIE_SECURE'] = True  # Use HTTPS
app.config['SESSION_COOKIE_HTTPONLY'] = True
app.config['SESSION_COOKIE_SAMESITE'] = 'Lax'
app.config['SECRET_KEY'] = SECRET_KEY

# Function to initialize Pinecone connection
def initialize_pinecone(index_name: str):
    try:
        pc = Pinecone(api_key=PINECONE_API_KEY)
        return pc.Index(index_name)
    except Exception as e:
        print(f"Error initializing Pinecone: {e}")
        raise

# Initialize Pinecone index and BM25 encoder
pinecone_index = initialize_pinecone("traveler-demo-website-vectorstore")
bm25 = BM25Encoder().load("./bm25_traveler_website.json")

# Initialize models and retriever
embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-large-en-v1.5", model_kwargs={"trust_remote_code":True})
retriever = PineconeHybridSearchRetriever(
    embeddings=embed_model, 
    sparse_encoder=bm25, 
    index=pinecone_index, 
    top_k=20, 
    alpha=0.5
)

# Initialize LLM
llm = ChatGroq(model="llama-3.1-8b-instant", temperature=0, max_tokens=1024, max_retries=2)

# Contextualization prompt and retriever
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is.
"""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_q_system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}")
    ]
)
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)

# QA system prompt and chain
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \
If you don't know the answer, simply state that you don't know. \
Provide answers in proper HTML format and keep them concise. \

When responding to queries, follow these guidelines: \

    1. Provide Clear Answers: \
        - Ensure the response directly addresses the query with accurate and relevant information.\

    2. Include Detailed References: \
        - Links to Sources: Include URLs to credible sources where users can verify information or explore further. \
        - Reference Sites: Mention specific websites or platforms that offer additional information. \
        - Downloadable Materials: Provide links to any relevant downloadable resources if applicable. \
    
    3. Formatting for Readability: \
        - The answer should be in a proper HTML format with appropriate tags. \
        - Use bullet points or numbered lists where applicable to present information clearly. \
        - Highlight key details using bold or italics. \
        - Provide proper and meaningful abbreviations for urls. Do not include naked urls. \
    
    4. Organize Content Logically: \
        - Structure the content in a logical order, ensuring easy navigation and understanding for the user. \
        
{context}
"""
qa_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", qa_system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}")
    ]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)

# Retrieval and Generative (RAG) Chain
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)

# Chat message history storage
store = {}

def clean_temporary_data():
    store.clear()

def get_session_history(session_id: str) -> BaseChatMessageHistory:
    if session_id not in store:
        store[session_id] = ChatMessageHistory()
    return store[session_id]

# Conversational RAG chain with message history
conversational_rag_chain = RunnableWithMessageHistory(
    rag_chain,
    get_session_history,
    input_messages_key="input",
    history_messages_key="chat_history",
    output_messages_key="answer",
)

# Function to handle WebSocket connection
@socketio.on('connect')
def handle_connect():
    print(f"Client connected: {request.sid}")
    emit('connection_response', {'message': 'Connected successfully.'})

# Function to handle WebSocket disconnection
@socketio.on('disconnect')
def handle_disconnect():
    print(f"Client disconnected: {request.sid}")
    clean_temporary_data()

# Function to handle WebSocket messages
@socketio.on('message')
def handle_message(data):
    question = data.get('question')
    session_id = data.get('session_id', SESSION_ID_DEFAULT)
    chain = conversational_rag_chain.pick("answer")

    try:
        for chunk in chain.stream(
                {"input": question},
                config={"configurable": {"session_id": session_id}},
            ):
            emit('response', chunk, room=request.sid)
    except Exception as e:
        print(f"Error during message handling: {e}")
        emit('response', {"error": "An error occurred while processing your request."}, room=request.sid)


# Home route
@app.route("/")
def index_view():
    return render_template('chat.html') 

# Main function to run the app
if __name__ == '__main__': 
    socketio.run(app, debug=False)