Rob Caamano commited on
Commit
94c9a58
1 Parent(s): a3bd575

App.py New Model

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -9,13 +9,12 @@ st.title("Detecting Toxic Tweets")
9
 
10
  demo = """Your words are like poison. They seep into my mind and make me feel worthless."""
11
 
12
- text = st.text_area("Input text", demo, height=250)
13
 
14
  model_options = {
15
  "DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english",
16
- "Fine-tuned Toxicity Model": "RobCaamano/toxicity_distilbert",
17
- "Fine-tuned Toxicity Model (RObert)": "RobCaamano/toxicity_RObert",
18
- "Model 3.0": "RobCaamano/toxicity_RObert2"
19
  }
20
  selected_model = st.selectbox("Select Model", options=list(model_options.keys()))
21
 
@@ -24,7 +23,7 @@ mod_name = model_options[selected_model]
24
  tokenizer = AutoTokenizer.from_pretrained(mod_name)
25
  model = AutoModelForSequenceClassification.from_pretrained(mod_name)
26
 
27
- if selected_model in ["Fine-tuned Toxicity Model", "Fine-tuned Toxicity Model (RObert)"]:
28
  toxicity_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
29
  model.config.id2label = {i: toxicity_classes[i] for i in range(model.config.num_labels)}
30
 
@@ -46,11 +45,11 @@ if st.button("Submit", type="primary"):
46
  column_name = "Prediction"
47
 
48
  if probability < 0.1:
49
- st.write("This tweet is not toxic.")
50
 
51
  df = pd.DataFrame(
52
  {
53
- "Tweet (portion)": [tweet_portion],
54
  column_name: [label],
55
  "Probability": [probability],
56
  }
 
9
 
10
  demo = """Your words are like poison. They seep into my mind and make me feel worthless."""
11
 
12
+ text = st.text_area("Input Text", demo, height=250)
13
 
14
  model_options = {
15
  "DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english",
16
+ "Fine-tuned Toxicity Model": "RobCaamano/toxicity",
17
+ "Fine-tuned Toxicity Model - Optimized": "RobCaamano/toxicity_optimized",
 
18
  }
19
  selected_model = st.selectbox("Select Model", options=list(model_options.keys()))
20
 
 
23
  tokenizer = AutoTokenizer.from_pretrained(mod_name)
24
  model = AutoModelForSequenceClassification.from_pretrained(mod_name)
25
 
26
+ if selected_model in ["Fine-tuned Toxicity Model", "Fine-tuned Toxicity Model - Optimized"]:
27
  toxicity_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
28
  model.config.id2label = {i: toxicity_classes[i] for i in range(model.config.num_labels)}
29
 
 
45
  column_name = "Prediction"
46
 
47
  if probability < 0.1:
48
+ st.write("This text is not toxic.")
49
 
50
  df = pd.DataFrame(
51
  {
52
+ "Text (portion)": [tweet_portion],
53
  column_name: [label],
54
  "Probability": [probability],
55
  }