import streamlit as st import pandas as pd from transformers import AutoTokenizer, pipeline from transformers import ( TFAutoModelForSequenceClassification as AutoModelForSequenceClassification, ) st.title("Detecting Toxic Tweets") demo = """Your words are like poison. They seep into my mind and make me feel worthless.""" text = st.text_area("Input Text", demo, height=250) model_options = { "DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english", "Fine-tuned Toxicity Model": "RobCaamano/toxicity", } selected_model = st.selectbox("Select Model", options=list(model_options.keys())) mod_name = model_options[selected_model] tokenizer = AutoTokenizer.from_pretrained(mod_name) model = AutoModelForSequenceClassification.from_pretrained(mod_name) clf = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True ) if selected_model in ["Fine-tuned Toxicity Model"]: toxicity_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] model.config.id2label = {i: toxicity_classes[i] for i in range(model.config.num_labels)} def get_toxicity_class(predictions, threshold=0.3): return {model.config.id2label[i]: pred for i, pred in enumerate(predictions) if pred >= threshold} input = tokenizer(text, return_tensors="tf") if st.button("Submit", type="primary"): results = dict(d.values() for d in clf(text)[0]) toxic_labels = {k: results[k] for k in results.keys() if not k == "toxic"} tweet_portion = text[:50] + "..." if len(text) > 50 else text if len(toxic_labels) == 0: st.write("This text is not toxic.") else: df = pd.DataFrame( { "Text (portion)": [tweet_portion] * len(toxic_labels), "Toxicity Class": list(toxic_labels.keys()), "Probability": list(toxic_labels.values()), } ) st.table(df)