from transformers import AutoTokenizer import streamlit as st from transformers import pipeline from transformers import ( TFAutoModelForSequenceClassification as AutoModelForSequenceClassification, ) st.title("Detecting Toxic Tweets") demo = """I'm so proud of myself for accomplishing my goals today. #motivation #success""" text = st.text_area("Input text", demo, height=250) model_name = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) clf = pipeline( "toxicity-analysis", model=model, tokenizer=tokenizer, return_all_scores=True ) input = tokenizer(text, return_tensors="tf") if st.button("Submit", type="primary"): results = clf(text)[0] classes = dict(d.values() for d in results) st.bar_chart(classes)