File size: 3,243 Bytes
7d1cd50 d372282 7d1cd50 d372282 7d1cd50 d372282 7d1cd50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import cv2
import os
import base64
import numpy as np
from PIL import ImageFont, ImageDraw, Image
import streamlit as st
from modules.Cartoon.main import cartoon
from modules.ThugLife.main import thug_life
# from helper.utils import file_checker
# from helper.descriptor import file_info
# from helper.rcnn_utils import generate_rcnn_mask
img_extensions = ["jpg","png","jpeg"]
def get_binary_file_downloader_html(bin_file,file_label='File'):
with open(bin_file,'rb') as f:
data = f.read()
bin_str = base64.b64encode(data).decode()
href = f'<h3><a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a></h3>'
return href
def image_transformations(result,inp_img,filter,img_extension = "jpg"):
result = result[:,:,:3]
# filter_info(filter)
if filter == "Basic Image Editing":
gamma = st.slider("Gamma Correction",0.0,5.0,1.0,step = 0.1)
saturation = st.slider("Saturation", 0.0, 2.0, 1.0, step=0.1)
blurring = st.checkbox("Bluring", False)
if blurring:
col1,col2 = st.columns(2)
blur_area = col1.slider("Blur Area",1,100,1,2)
blur_intensity = col2.slider("Blur Intensity", 0, 500, 0, 1)
result = cv2.GaussianBlur(result, (blur_area, 1), blur_intensity)
apply_vignette = st.checkbox("Apply Vignette effect",False)
if apply_vignette:
vignette_effect = st.slider("Vignette Intensity",1,120,1)
rows, cols = result.shape[:2]
kernel_x = cv2.getGaussianKernel(cols, vignette_effect + 139)
kernel_y = cv2.getGaussianKernel(rows, vignette_effect + 139)
kernel = kernel_y*kernel_x.T
filter = 255 * kernel / np.linalg.norm(kernel)
vignette_img = np.copy(result)
for i in range(3):
vignette_img[:,:,i] = vignette_img[:,:,i]*filter
result = vignette_img
hsvImg = cv2.cvtColor(result, cv2.COLOR_BGR2HSV)
hsvImg[..., 1] = np.clip(hsvImg[..., 1] * saturation, 0, 255)
hsvImg[..., 2] = np.power((hsvImg[..., 2] / 255.0), 1 / (gamma + 0.1)) * 255.0
result = cv2.cvtColor(hsvImg, cv2.COLOR_HSV2BGR)
elif filter == "Cartoonie":
line_size = st.slider("Number of edges",3,101,7,2)
blurVal = st.slider("Blurr effect",3,101,7,2)
totalCols = st.slider("Total Color in images",2,100,11,1)
result = cartoon(result,[line_size,blurVal,totalCols])
elif filter == "Thug Life":
angle = st.slider("Angle",-360,360,0,1)
x = st.slider("Shift X",-1.0,1.0,0.0,0.1)
y = st.slider("Shift Y", -1.0, 1.0, 0.0, 0.1)
result = thug_life(inp_img,angle,x,y)
if np.all(result != None):
st.image(result, use_column_width=True, clamp=True, channels="BGR")
filename = img_extension[0] + "." + img_extension[-1]
cv2.imwrite(filename, result)
st.markdown(get_binary_file_downloader_html(filename,
'From Here '),
unsafe_allow_html=True) |