from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel from unsloth import FastLanguageModel import torch max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # 4bit pre quantized models we support for 4x faster downloading + no OOMs. fourbit_models = [ "unsloth/llama-3-8b-Instruct-bnb-4bit", ] model, tokenizer = FastLanguageModel.from_pretrained( model_name = "unsloth/llama-3-8b-Instruct-bnb-4bit", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) # Load the base model and apply LoRA adapters from transformers import AutoModel adapter_model = AutoModel.from_pretrained("Rohan5manza/sentiment_analysis") model = PeftModel.from_pretrained(model, adapter_model) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Example Gradio or Streamlit interface for deploying import gradio as gr def gradio_interface(prompt): response = generate_response(prompt) return response iface = gr.Interface(fn=gradio_interface, inputs="text", outputs="text") iface.launch()