RohanHBTU's picture
Update app.py
223f3a7 verified
from flask import Flask, render_template, request, jsonify
import os
os.environ['TRANSFORMERS_CACHE'] = '/code/cache/'
#os.environ['SENTENCE_TRANSFORMERS_HOME'] = './.cache'
#from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import T5Tokenizer, T5ForConditionalGeneration
#import numpy as np
from transformers import AdamW
#import pandas as pd
import torch
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.nn.utils.rnn import pad_sequence
MODEL_NAME='t5-base'
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
INPUT_MAX_LEN = 512
OUTPUT_MAX_LEN = 512
#tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
#model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, model_max_length=512)
app = Flask(__name__)
app.jinja_env.auto_reload = True
app.config['TEMPLATES_AUTO_RELOAD'] = True
@app.route("/")
def index():
return render_template('chat.html')
@app.route("/get", methods=["GET", "POST"])
def chat():
msg = request.form["msg"]
input = msg
return get_Chat_response(input)
class T5Model(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict = True)
def forward(self, input_ids, attention_mask, labels=None):
output = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
return output.loss, output.logits
def training_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels= batch["target"]
loss, logits = self(input_ids , attention_mask, labels)
self.log("train_loss", loss, prog_bar=True, logger=True)
return {'loss': loss}
def validation_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels= batch["target"]
loss, logits = self(input_ids, attention_mask, labels)
self.log("val_loss", loss, prog_bar=True, logger=True)
return {'val_loss': loss}
def configure_optimizers(self):
return AdamW(self.parameters(), lr=0.0001)
train_model = T5Model.load_from_checkpoint('best-model-version.ckpt',map_location=DEVICE)
train_model.freeze()
def get_Chat_response(question):
inputs_encoding = tokenizer(
question,
add_special_tokens=True,
max_length= INPUT_MAX_LEN,
padding = 'max_length',
truncation='only_first',
return_attention_mask=True,
return_tensors="pt"
)
generate_ids = train_model.model.generate(
input_ids = inputs_encoding["input_ids"],
attention_mask = inputs_encoding["attention_mask"],
max_length = INPUT_MAX_LEN,
num_beams = 4,
num_return_sequences = 1,
no_repeat_ngram_size=2,
early_stopping=True,
)
preds = [
tokenizer.decode(gen_id,
skip_special_tokens=True,
clean_up_tokenization_spaces=True)
for gen_id in generate_ids
]
return "".join(preds)
#def get_Chat_response(text):
#
# # Let's chat for 5 lines
# for step in range(5):
# # encode the new user input, add the eos_token and return a tensor in Pytorch
# new_user_input_ids = tokenizer.encode(str(text) + tokenizer.eos_token, return_tensors='pt')
#
# # append the new user input tokens to the chat history
# bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
#
# # generated a response while limiting the total chat history to 1000 tokens,
# chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
#
# # pretty print last ouput tokens from bot
# return tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
if __name__ == '__main__':
app.run(debug=True)