File size: 3,500 Bytes
e2d2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23df26a
e2d2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from transformers import T5Tokenizer, T5ForConditionalGeneration  

from transformers import AdamW
import pandas as pd
import torch
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.nn.utils.rnn import pad_sequence
# from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler

pl.seed_everything(100)

MODEL_NAME='t5-base'
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
INPUT_MAX_LEN = 128 
OUTPUT_MAX_LEN = 128

tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, model_max_length=512)

class T5Model(pl.LightningModule):
    
    def __init__(self):
        super().__init__()
        self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict = True)

        
    def forward(self, input_ids, attention_mask, labels=None):
        
        output = self.model(
        input_ids=input_ids, 
        attention_mask=attention_mask, 
        labels=labels
        )
        return output.loss, output.logits
    
    def training_step(self, batch, batch_idx):

        input_ids = batch["input_ids"]
        attention_mask = batch["attention_mask"]
        labels= batch["target"]
        loss, logits = self(input_ids , attention_mask, labels)

        
        self.log("train_loss", loss, prog_bar=True, logger=True)

        return {'loss': loss}
    
    def validation_step(self, batch, batch_idx):
        input_ids = batch["input_ids"]
        attention_mask = batch["attention_mask"]
        labels= batch["target"]
        loss, logits = self(input_ids, attention_mask, labels)

        self.log("val_loss", loss, prog_bar=True, logger=True)
        
        return {'val_loss': loss}

    def configure_optimizers(self):
        return AdamW(self.parameters(), lr=0.0001)

train_model = T5Model.load_from_checkpoint('best-model.ckpt',map_location=DEVICE)
train_model.freeze()

def generate_question(question):

    inputs_encoding =  tokenizer(
        question,
        add_special_tokens=True,
        max_length= INPUT_MAX_LEN,
        padding = 'max_length',
        truncation='only_first',
        return_attention_mask=True,
        return_tensors="pt"
        )

    
    generate_ids = train_model.model.generate(
        input_ids = inputs_encoding["input_ids"],
        attention_mask = inputs_encoding["attention_mask"],
        max_length = INPUT_MAX_LEN,
        num_beams = 4,
        num_return_sequences = 1,
        no_repeat_ngram_size=2,
        early_stopping=True,
        )

    preds = [
        tokenizer.decode(gen_id,
        skip_special_tokens=True, 
        clean_up_tokenization_spaces=True)
        for gen_id in generate_ids
    ]

    return "".join(preds)

import gradio as gr
import random
import time

with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    gr.Chatbot.style(chatbot,height=300)
    msg = gr.Textbox(info="Press \'Enter\' to send")
    clear = gr.Button("Clear")

    def user(user_message, history):
        return "", history + [[user_message, None]]

    def bot(history):
        bot_message = generate_question(history[-1][0])
        history[-1][1] = ""
        for character in bot_message:
            history[-1][1] += character
            time.sleep(0.05)
            yield history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=True)

demo.queue(concurrency_count=2)
demo.launch()