bhp / app.py
RohanHBTU's picture
Upload 8 files
d8afc51
raw
history blame
2.21 kB
from flask import Flask, request, jsonify, render_template
import pickle
import json
import numpy as np
app = Flask(__name__)
@app.route('/')
def home():
return render_template('index.html')
__locations = None
data_columns = None
model = None
'''
def get_estimated_price(location,sqft,bhk,bath):
try:
loc_index = __data_columns.index(location.lower())
except:
loc_index = -1
x = np.zeros(len(__data_columns))
x[0] = sqft
x[1] = bath
x[2] = bhk
if loc_index>=0:
x[loc_index] = 1
return round(__model.predict([x])[0],2)
'''
def load_saved_artifacts():
print("loading saved artifacts...start")
global data_columns
global __locations
with open("columns.json", "r") as f:
data_columns = json.load(f)['data_columns']
__locations = data_columns[4:] # first 3 columns are sqft, bath, bhk
global model
if model is None:
with open('banglore_home_prices_model.pickle', 'rb') as f:
model = pickle.load(f)
print("loading saved artifacts...done")
'''
def get_data_columns():
return __data_columns
'''
'''
@app.route('/get_location_names', methods=['GET'])
def get_location_names():
response = jsonify({
'locations': __locations
})
response.headers.add('Access-Control-Allow-Origin', '*')
return response
'''
@app.route('/predict_home_price', methods=['POST'])
def predict_home_price():
total_sqft = float(request.form['total_sqft'])
location = request.form['location']
bhk = int(request.form['bhk'])
bath = int(request.form['bath'])
# response = jsonify({
# 'estimated_price': get_estimated_price(location,total_sqft,bhk,bath)
# })
try:
loc_index = data_columns.index(location.lower())
except:
loc_index = -1
x = np.zeros(len(data_columns))
x[0] = total_sqft
x[1] = bath
x[2] = bhk
if loc_index>=0:
x[loc_index] = 1
output=round(model.predict([x])[0],2)
return render_template('index.html', prediction_text=output)
print("Starting Python Flask Server For Home Price Prediction...")
load_saved_artifacts()
if __name__ == "__main__":
app.run(debug=True)