File size: 4,989 Bytes
bfe5167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""Token prediction metric."""

from typing import List, Tuple

import datasets
import numpy as np
from Levenshtein import distance as levenshtein_distance
from scipy.optimize import linear_sum_assignment

import evaluate


_DESCRIPTION = """
Unofficial implementation of the Error Reduction Rate (ERR) metric introduced for lexical normalization.
This implementation works on Seq2Seq models by aligning the predictions with the ground truth outputs.
"""


_KWARGS_DESCRIPTION = """
Args:
    predictions (`list` of `str`): Predicted labels.
    references (`list` of `Dict[str, str]`): Ground truth sentences, each with a field `input` and `output`.
Returns:
    `err` (`float` or `int`): Error Reduction Rate. See here: http://noisy-text.github.io/2021/multi-lexnorm.html
    `err_tp` (`int`): Number of true positives.
    `err_fn` (`int`): Number of false negatives.
    `err_tn` (`int`): Number of true negatives.
    `err_fp` (`int`): Number of false positives.
Examples:
    Example 1-A simple example
        >>> err = evaluate.load("err")
        >>> results = err.compute(predictions=[["The", "large", "dog"]], references=[{"input": ["The", "large", "dawg"], "output": ["The", "large", "dog"]}])
        >>> print(results)
        {'err': 1.0, 'err_tp': 2, 'err_fn': 0, 'err_tn': 1, 'err_fp': 0}
"""


_CITATION = """
@inproceedings{baldwin-etal-2015-shared,
    title = "Shared Tasks of the 2015 Workshop on Noisy User-generated Text: {T}witter Lexical Normalization and Named Entity Recognition",
    author = "Baldwin, Timothy  and
      de Marneffe, Marie Catherine  and
      Han, Bo  and
      Kim, Young-Bum  and
      Ritter, Alan  and
      Xu, Wei",
    booktitle = "Proceedings of the Workshop on Noisy User-generated Text",
    month = jul,
    year = "2015",
    address = "Beijing, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W15-4319",
    doi = "10.18653/v1/W15-4319",
    pages = "126--135",
}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ErrorReductionRate(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(datasets.Value("string")),
                    "references": {
                        "input": datasets.Sequence(datasets.Value("string")),
                        "output": datasets.Sequence(datasets.Value("string")),
                    },
                }
            ),
        )

    def _compute(self, predictions, references):

        tp, fn, tn, fp = 0, 0, 0, 0
        for pred, ref in zip(predictions, references):
            inputs, outputs = ref["input"], ref["output"]

            labels = self._split_expressions_into_tokens(outputs)

            assert len(pred) == len(
                labels
            ), f"Number of predicted words ({len(pred)}) does not match number of target words ({len(labels)})"

            formatted_preds = self._align_predictions_with_labels(pred, labels)

            for i in range(len(inputs)):
                # Normalization was necessary
                if inputs[i].lower() != outputs[i]:
                    tp += formatted_preds[i] == outputs[i]
                    fn += formatted_preds[i] != outputs[i]
                else:
                    tn += formatted_preds[i] == outputs[i]
                    fp += formatted_preds[i] != outputs[i]

        err = (tp - fp) / (tp + fn)

        return {"err": err, "err_tp": tp, "err_fn": fn, "err_tn": tn, "err_fp": fp}

    def _align_predictions_with_labels(self, predictions: List[str], labels: List[Tuple[str, int]]) -> List[str]:
        levenshtein_matrix = np.zeros((len(labels), len(predictions)))

        for i, (label, _) in enumerate(labels):
            for j, pred in enumerate(predictions):
                levenshtein_matrix[i, j] = levenshtein_distance(label, pred)

        col_alignment, row_alignment = linear_sum_assignment(levenshtein_matrix)
        alignment = sorted(row_alignment, key=lambda i: col_alignment[i])

        num_outputs = max(map(lambda x: x[1], labels)) + 1
        formatted_preds = [[] for _ in range(num_outputs)]
        for i, aligned_idx in enumerate(alignment):
            formatted_preds[labels[i][1]].append(predictions[aligned_idx])

        formatted_preds = [" ".join(preds) for preds in formatted_preds]

        return formatted_preds

    def _split_expressions_into_tokens(self, outputs: List[str]) -> List[Tuple[str, int]]:
        labels = []
        for segment, normalized in enumerate(outputs):
            if normalized == "":
                labels.append((normalized, segment))
            else:
                for w in normalized.split():
                    labels.append((w, segment))

        return labels