Jordan Legg commited on
Commit
a7d057d
β€’
1 Parent(s): d2b0012

check latent chapes before multiplication

Browse files
Files changed (1) hide show
  1. app.py +36 -39
app.py CHANGED
@@ -5,7 +5,7 @@ import random
5
  import torch
6
  from PIL import Image
7
  from torchvision import transforms
8
- from diffusers import DiffusionPipeline, AutoencoderKL
9
 
10
  # Constants
11
  dtype = torch.bfloat16
@@ -13,27 +13,43 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
13
  MAX_SEED = np.iinfo(np.int32).max
14
  MAX_IMAGE_SIZE = 2048
15
 
16
- # Load models
17
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
18
  pipe.enable_model_cpu_offload()
19
  pipe.vae.enable_slicing()
20
  pipe.vae.enable_tiling()
21
 
22
- vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae").to(device)
23
-
24
  def preprocess_image(image, image_size):
25
  preprocess = transforms.Compose([
26
  transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
27
  transforms.ToTensor(),
28
  transforms.Normalize([0.5], [0.5])
29
  ])
30
- image = preprocess(image).unsqueeze(0).to(device, dtype=torch.float32)
31
  return image
32
 
33
- def encode_image(image):
34
- with torch.no_grad():
35
- latents = vae.encode(image).latent_dist.sample() * 0.18215
36
- return latents
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  @spaces.GPU()
39
  def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
@@ -56,15 +72,21 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
56
  # img2img case
57
  init_image = init_image.convert("RGB")
58
  init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
59
- latents = encode_image(init_image)
60
 
 
 
 
 
61
  latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
62
 
63
- if latents.shape[1] != pipe.vae.config.latent_channels:
64
- conv = torch.nn.Conv2d(latents.shape[1], pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=dtype)
65
- latents = conv(latents.to(dtype))
 
 
66
 
67
- latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
 
68
 
69
  image = pipe(
70
  prompt=prompt,
@@ -81,30 +103,5 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
81
  print(f"Error during inference: {e}")
82
  return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image
83
 
84
- # Gradio interface setup
85
- with gr.Blocks() as demo:
86
- with gr.Row():
87
- prompt = gr.Textbox(label="Prompt")
88
- init_image = gr.Image(label="Initial Image (optional)", type="pil")
89
-
90
- with gr.Row():
91
- generate = gr.Button("Generate")
92
-
93
- with gr.Row():
94
- result = gr.Image(label="Result")
95
- seed_output = gr.Number(label="Seed")
96
-
97
- with gr.Accordion("Advanced Settings", open=False):
98
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
99
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
100
- width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
101
- height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
102
- num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
103
-
104
- generate.click(
105
- infer,
106
- inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
107
- outputs=[result, seed_output]
108
- )
109
 
110
  demo.launch()
 
5
  import torch
6
  from PIL import Image
7
  from torchvision import transforms
8
+ from diffusers import DiffusionPipeline
9
 
10
  # Constants
11
  dtype = torch.bfloat16
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
  MAX_IMAGE_SIZE = 2048
15
 
16
+ # Load FLUX model
17
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
18
  pipe.enable_model_cpu_offload()
19
  pipe.vae.enable_slicing()
20
  pipe.vae.enable_tiling()
21
 
 
 
22
  def preprocess_image(image, image_size):
23
  preprocess = transforms.Compose([
24
  transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
25
  transforms.ToTensor(),
26
  transforms.Normalize([0.5], [0.5])
27
  ])
28
+ image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
29
  return image
30
 
31
+ def check_shapes(latents):
32
+ # Get the shape of the latents
33
+ latent_shape = latents.shape
34
+ print(f"Latent shape: {latent_shape}")
35
+
36
+ # Get the expected shape for the transformer input
37
+ expected_shape = (1, latent_shape[1] * latent_shape[2], latent_shape[3])
38
+ print(f"Expected transformer input shape: {expected_shape}")
39
+
40
+ # Get the shape of the transformer's weight matrix
41
+ if hasattr(pipe.transformer, 'text_model'):
42
+ weight_shape = pipe.transformer.text_model.encoder.layers[0].self_attn.q_proj.weight.shape
43
+ else:
44
+ weight_shape = pipe.transformer.encoder.layers[0].self_attn.q_proj.weight.shape
45
+ print(f"Transformer weight shape: {weight_shape}")
46
+
47
+ # Check if the shapes are compatible for matrix multiplication
48
+ if expected_shape[1] == weight_shape[1]:
49
+ print("Shapes are compatible for matrix multiplication.")
50
+ else:
51
+ print("Warning: Shapes are not compatible for matrix multiplication.")
52
+ print(f"Expected: {expected_shape[1]}, Got: {weight_shape[1]}")
53
 
54
  @spaces.GPU()
55
  def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
 
72
  # img2img case
73
  init_image = init_image.convert("RGB")
74
  init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
 
75
 
76
+ # Encode the image using FLUX VAE
77
+ latents = pipe.vae.encode(init_image).latent_dist.sample() * 0.18215
78
+
79
+ # Ensure latents are the correct shape
80
  latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
81
 
82
+ # Check shapes before reshaping
83
+ check_shapes(latents)
84
+
85
+ # Reshape latents to match the expected input shape of the transformer
86
+ latents = latents.permute(0, 2, 3, 1).contiguous().view(1, -1, pipe.vae.config.latent_channels)
87
 
88
+ # Check shapes after reshaping
89
+ check_shapes(latents)
90
 
91
  image = pipe(
92
  prompt=prompt,
 
103
  print(f"Error during inference: {e}")
104
  return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
  demo.launch()