|
import os |
|
|
|
|
|
|
|
|
|
os.system('git clone https://github.com/ggerganov/whisper.cpp.git') |
|
os.system('make -C ./whisper.cpp') |
|
|
|
|
|
|
|
|
|
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small') |
|
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base') |
|
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium') |
|
os.system('bash ./whisper.cpp/models/download-ggml-model.sh large') |
|
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
from pathlib import Path |
|
import pysrt |
|
import pandas as pd |
|
import re |
|
import time |
|
import os |
|
import json |
|
import requests |
|
|
|
from pytube import YouTube |
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
import psutil |
|
num_cores = psutil.cpu_count() |
|
os.environ["OMP_NUM_THREADS"] = f"{num_cores}" |
|
headers = {'Authorization': os.environ['DeepL_API_KEY']} |
|
|
|
whisper_models = ["base", "small", "medium", "large", "base.en"] |
|
|
|
|
|
LANGUAGES = { |
|
"en": "english", |
|
"zh": "chinese", |
|
"de": "german", |
|
"es": "spanish", |
|
"ru": "russian", |
|
"ko": "korean", |
|
"fr": "french", |
|
"ja": "japanese", |
|
"pt": "portuguese", |
|
"tr": "turkish", |
|
"pl": "polish", |
|
"ca": "catalan", |
|
"nl": "dutch", |
|
"ar": "arabic", |
|
"sv": "swedish", |
|
"it": "italian", |
|
"id": "indonesian", |
|
"hi": "hindi", |
|
"fi": "finnish", |
|
"vi": "vietnamese", |
|
"he": "hebrew", |
|
"uk": "ukrainian", |
|
"el": "greek", |
|
"ms": "malay", |
|
"cs": "czech", |
|
"ro": "romanian", |
|
"da": "danish", |
|
"hu": "hungarian", |
|
"ta": "tamil", |
|
"no": "norwegian", |
|
"th": "thai", |
|
"ur": "urdu", |
|
"hr": "croatian", |
|
"bg": "bulgarian", |
|
"lt": "lithuanian", |
|
"la": "latin", |
|
"mi": "maori", |
|
"ml": "malayalam", |
|
"cy": "welsh", |
|
"sk": "slovak", |
|
"te": "telugu", |
|
"fa": "persian", |
|
"lv": "latvian", |
|
"bn": "bengali", |
|
"sr": "serbian", |
|
"az": "azerbaijani", |
|
"sl": "slovenian", |
|
"kn": "kannada", |
|
"et": "estonian", |
|
"mk": "macedonian", |
|
"br": "breton", |
|
"eu": "basque", |
|
"is": "icelandic", |
|
"hy": "armenian", |
|
"ne": "nepali", |
|
"mn": "mongolian", |
|
"bs": "bosnian", |
|
"kk": "kazakh", |
|
"sq": "albanian", |
|
"sw": "swahili", |
|
"gl": "galician", |
|
"mr": "marathi", |
|
"pa": "punjabi", |
|
"si": "sinhala", |
|
"km": "khmer", |
|
"sn": "shona", |
|
"yo": "yoruba", |
|
"so": "somali", |
|
"af": "afrikaans", |
|
"oc": "occitan", |
|
"ka": "georgian", |
|
"be": "belarusian", |
|
"tg": "tajik", |
|
"sd": "sindhi", |
|
"gu": "gujarati", |
|
"am": "amharic", |
|
"yi": "yiddish", |
|
"lo": "lao", |
|
"uz": "uzbek", |
|
"fo": "faroese", |
|
"ht": "haitian creole", |
|
"ps": "pashto", |
|
"tk": "turkmen", |
|
"nn": "nynorsk", |
|
"mt": "maltese", |
|
"sa": "sanskrit", |
|
"lb": "luxembourgish", |
|
"my": "myanmar", |
|
"bo": "tibetan", |
|
"tl": "tagalog", |
|
"mg": "malagasy", |
|
"as": "assamese", |
|
"tt": "tatar", |
|
"haw": "hawaiian", |
|
"ln": "lingala", |
|
"ha": "hausa", |
|
"ba": "bashkir", |
|
"jw": "javanese", |
|
"su": "sundanese", |
|
} |
|
|
|
|
|
source_languages = { |
|
**{language: code for code, language in LANGUAGES.items()}, |
|
"burmese": "my", |
|
"valencian": "ca", |
|
"flemish": "nl", |
|
"haitian": "ht", |
|
"letzeburgesch": "lb", |
|
"pushto": "ps", |
|
"panjabi": "pa", |
|
"moldavian": "ro", |
|
"moldovan": "ro", |
|
"sinhalese": "si", |
|
"castilian": "es", |
|
"Let the model analyze": "Let the model analyze" |
|
} |
|
|
|
DeepL_language_codes_for_translation = { |
|
"Bulgarian": "BG", |
|
"Czech": "CS", |
|
"Danish": "DA", |
|
"German": "DE", |
|
"Greek": "EL", |
|
"English": "EN", |
|
"Spanish": "ES", |
|
"Estonian": "ET", |
|
"Finnish": "FI", |
|
"French": "FR", |
|
"Hungarian": "HU", |
|
"Indonesian": "ID", |
|
"Italian": "IT", |
|
"Japanese": "JA", |
|
"Lithuanian": "LT", |
|
"Latvian": "LV", |
|
"Dutch": "NL", |
|
"Polish": "PL", |
|
"Portuguese": "PT", |
|
"Romanian": "RO", |
|
"Russian": "RU", |
|
"Slovak": "SK", |
|
"Slovenian": "SL", |
|
"Swedish": "SV", |
|
"Turkish": "TR", |
|
"Ukrainian": "UK", |
|
"Chinese": "ZH" |
|
} |
|
|
|
|
|
|
|
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False) |
|
|
|
|
|
source_language_list = [key[0] for key in source_languages.items()] |
|
translation_models_list = [key[0] for key in DeepL_language_codes_for_translation.items()] |
|
|
|
videos_out_path = Path("./videos_out") |
|
videos_out_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
def get_youtube(video_url): |
|
yt = YouTube(video_url) |
|
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() |
|
print("LADATATTU POLKUUN") |
|
print(abs_video_path) |
|
|
|
|
|
return abs_video_path |
|
|
|
def speech_to_text(video_file_path, selected_source_lang, whisper_model): |
|
""" |
|
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models. |
|
# Currently supports only English audio |
|
This space allows you to: |
|
1. Download youtube video with a given url |
|
2. Watch it in the first video component |
|
3. Run automatic speech recognition on the video using fast Whisper models |
|
4. Translate the recognized transcriptions to 26 languages supported by deepL |
|
5. Burn the translations to the original video and watch the video in the 2nd video component |
|
|
|
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper |
|
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp |
|
""" |
|
|
|
if(video_file_path == None): |
|
raise ValueError("Error no video input") |
|
print(video_file_path) |
|
try: |
|
_,file_ending = os.path.splitext(f'{video_file_path}') |
|
print(f'file enging is {file_ending}') |
|
print("starting conversion to wav") |
|
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"') |
|
print("conversion to wav ready") |
|
|
|
|
|
|
|
print("starting whisper c++") |
|
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt" |
|
os.system(f'rm -f {srt_path}') |
|
if selected_source_lang == "Let the model analyze": |
|
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt') |
|
else: |
|
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt') |
|
print("starting whisper done with whisper") |
|
except Exception as e: |
|
raise RuntimeError("Error converting video to audio") |
|
|
|
try: |
|
|
|
|
|
df = pd.DataFrame(columns = ['start','end','text']) |
|
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt" |
|
subs = pysrt.open(srt_path) |
|
|
|
|
|
objects = [] |
|
for sub in subs: |
|
|
|
|
|
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2] |
|
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2] |
|
|
|
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2] |
|
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2] |
|
|
|
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2] |
|
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2] |
|
|
|
start_millis = str(str(sub.start.milliseconds) + "000")[0:3] |
|
end_millis = str(str(sub.end.milliseconds) + "000")[0:3] |
|
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}']) |
|
|
|
for object in objects: |
|
srt_to_df = { |
|
'start': [object[1]], |
|
'end': [object[2]], |
|
'text': [object[0]] |
|
} |
|
|
|
df = pd.concat([df, pd.DataFrame(srt_to_df)]) |
|
|
|
|
|
return df |
|
|
|
except Exception as e: |
|
raise RuntimeError("Error Running inference with local model", e) |
|
|
|
|
|
def translate_transcriptions(df, selected_translation_lang_2): |
|
if selected_translation_lang_2 is None: |
|
selected_translation_lang_2 = 'english' |
|
df.reset_index(inplace=True) |
|
|
|
print("start_translation") |
|
translations = [] |
|
|
|
|
|
|
|
text_combined = "" |
|
for i, sentence in enumerate(df['text']): |
|
if i == 0: |
|
text_combined = sentence |
|
else: |
|
text_combined = text_combined + '\n' + sentence |
|
|
|
data = {'text': text_combined, |
|
'tag_spitting': 'xml', |
|
'target_lang': DeepL_language_codes_for_translation.get(selected_translation_lang_2) |
|
} |
|
response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data) |
|
|
|
|
|
translated_sentences = json.loads(response.text) |
|
translated_sentences = translated_sentences['translations'][0]['text'].split('\n') |
|
df['translation'] = translated_sentences |
|
|
|
|
|
print("translations done") |
|
|
|
return df |
|
|
|
|
|
def create_srt_and_burn(df, video_in): |
|
|
|
print("Starting creation of video wit srt") |
|
print("video in path is:") |
|
print(video_in) |
|
|
|
|
|
with open('testi.srt','w', encoding="utf-8") as file: |
|
for i in range(len(df)): |
|
file.write(str(i+1)) |
|
file.write('\n') |
|
start = df.iloc[i]['start'] |
|
|
|
|
|
|
|
file.write(f"{start}") |
|
|
|
stop = df.iloc[i]['end'] |
|
|
|
|
|
file.write(' --> ') |
|
file.write(f"{stop}") |
|
file.write('\n') |
|
file.writelines(df.iloc[i]['translation']) |
|
if int(i) != len(df)-1: |
|
file.write('\n\n') |
|
|
|
print("SRT DONE") |
|
try: |
|
file1 = open('./testi.srt', 'r', encoding="utf-8") |
|
Lines = file1.readlines() |
|
|
|
count = 0 |
|
|
|
for line in Lines: |
|
count += 1 |
|
print("{}".format(line)) |
|
|
|
print(type(video_in)) |
|
print(video_in) |
|
|
|
video_out = video_in.replace('.mp4', '_out.mp4') |
|
print("video_out_path") |
|
print(video_out) |
|
command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out) |
|
print(command) |
|
os.system(command) |
|
return video_out |
|
except Exception as e: |
|
print(e) |
|
return video_out |
|
|
|
|
|
|
|
video_in = gr.Video(label="Video file", mirror_webcam=False) |
|
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) |
|
video_out = gr.Video(label="Video Out", mirror_webcam=False) |
|
|
|
|
|
|
|
df_init = pd.DataFrame(columns=['start','end','text']) |
|
|
|
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True) |
|
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True) |
|
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True) |
|
|
|
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') |
|
transcription_and_translation_df = gr.DataFrame(value=df_init,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate') |
|
|
|
|
|
demo = gr.Blocks(css=''' |
|
#cut_btn, #reset_btn { align-self:stretch; } |
|
#\\31 3 { max-width: 540px; } |
|
.output-markdown {max-width: 65ch !important;} |
|
''') |
|
demo.encrypt = False |
|
with demo: |
|
transcription_var = gr.Variable() |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(''' |
|
### This space allows you to: |
|
##### 1. Download youtube video with a given URL |
|
##### 2. Watch it in the first video component |
|
##### 3. Run automatic speech recognition on the video using Whisper |
|
##### 4. Translate the recognized transcriptions to 26 languages supported by deepL |
|
##### 5. Burn the translations to the original video and watch the video in the 2nd video component |
|
''') |
|
|
|
with gr.Column(): |
|
gr.Markdown(''' |
|
### 1. Insert Youtube URL below. Some test videos below: |
|
##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24 |
|
##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren |
|
##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision |
|
''') |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
youtube_url_in.render() |
|
download_youtube_btn = gr.Button("Step 1. Download Youtube video") |
|
download_youtube_btn.click(get_youtube, [youtube_url_in], [ |
|
video_in]) |
|
print(video_in) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
video_in.render() |
|
with gr.Column(): |
|
gr.Markdown(''' |
|
##### Here you can start the transcription and translation process. |
|
##### Be aware that processing will last some time. With base model it is around 3x speed |
|
##### Please select source language for better transcriptions. Using 'Let the model analyze' makes mistakes sometimes and may lead to bad transcriptions |
|
''') |
|
selected_source_lang.render() |
|
selected_whisper_model.render() |
|
transcribe_btn = gr.Button("Step 2. Transcribe audio") |
|
transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], transcription_df) |
|
|
|
|
|
with gr.Row(): |
|
gr.Markdown(''' |
|
##### Here you will get transcription output |
|
##### ''') |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
transcription_df.render() |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(''' |
|
##### PLEASE READ BELOW |
|
##### Here you will can translate transcriptions to 26 languages. |
|
##### If spoken language is not in the list, translation might not work. In this case original transcriptions are used |
|
##### ''') |
|
selected_translation_lang_2.render() |
|
translate_transcriptions_button = gr.Button("Step 3. Translate transcription") |
|
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2], transcription_and_translation_df) |
|
transcription_and_translation_df.render() |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(''' |
|
##### Now press the Step 4. Button to create output video with translated transcriptions |
|
##### ''') |
|
translate_and_make_srt_btn = gr.Button("Step 4. Create and burn srt to video") |
|
print(video_in) |
|
translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_and_translation_df,video_in], [ |
|
video_out]) |
|
video_out.render() |
|
|
|
|
|
demo.launch() |