Update app.py
Browse files
app.py
CHANGED
@@ -11,11 +11,6 @@ os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium')
|
|
11 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh large')
|
12 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en')
|
13 |
|
14 |
-
#os.system('./whisper.cpp/main -m whisper.cpp/models/ggml-base.en.bin -f whisper.cpp/samples/jfk.wav')
|
15 |
-
#print("SEURAAVAKSI SMALL TESTI")
|
16 |
-
#os.system('./whisper.cpp/main -m whisper.cpp/models/ggml-small.bin -f whisper.cpp/samples/jfk.wav')
|
17 |
-
#print("MOI")
|
18 |
-
|
19 |
|
20 |
import gradio as gr
|
21 |
from pathlib import Path
|
@@ -25,11 +20,7 @@ import re
|
|
25 |
import time
|
26 |
|
27 |
from pytube import YouTube
|
28 |
-
#from transformers import MarianMTModel, MarianTokenizer
|
29 |
|
30 |
-
import psutil
|
31 |
-
num_cores = psutil.cpu_count()
|
32 |
-
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
|
33 |
headers = {'Authorization': os.environ['DeepL_API_KEY']}
|
34 |
|
35 |
|
@@ -227,7 +218,8 @@ def speech_to_text(video_file_path, selected_source_lang, whisper_model):
|
|
227 |
2. Watch it in the first video component
|
228 |
3. Run automatic speech recognition on the video using fast Whisper models
|
229 |
4. Translate the recognized transcriptions to 26 languages supported by deepL
|
230 |
-
5.
|
|
|
231 |
|
232 |
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
|
233 |
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
|
|
|
11 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh large')
|
12 |
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en')
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
import gradio as gr
|
16 |
from pathlib import Path
|
|
|
20 |
import time
|
21 |
|
22 |
from pytube import YouTube
|
|
|
23 |
|
|
|
|
|
|
|
24 |
headers = {'Authorization': os.environ['DeepL_API_KEY']}
|
25 |
|
26 |
|
|
|
218 |
2. Watch it in the first video component
|
219 |
3. Run automatic speech recognition on the video using fast Whisper models
|
220 |
4. Translate the recognized transcriptions to 26 languages supported by deepL
|
221 |
+
5. Download generated subtitles in .vtt and .srt formats
|
222 |
+
6. Watch the the original video with generated subtitles
|
223 |
|
224 |
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
|
225 |
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
|