Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Train a GAN using the techniques described in the paper | |
"Training Generative Adversarial Networks with Limited Data".""" | |
import os | |
import click | |
import re | |
import json | |
import tempfile | |
import torch | |
import dnnlib | |
from training import training_loop | |
# from training import training_loop_simmim as training_loop | |
# from training import training_loop_woMap as training_loop | |
from metrics import metric_main | |
from torch_utils import training_stats | |
from torch_utils import custom_ops | |
#---------------------------------------------------------------------------- | |
class UserError(Exception): | |
pass | |
#---------------------------------------------------------------------------- | |
def setup_training_loop_kwargs( | |
# General options (not included in desc). | |
gpus = None, # Number of GPUs: <int>, default = 1 gpu | |
snap = None, # Snapshot interval: <int>, default = 50 ticks | |
metrics = None, # List of metric names: [], ['fid50k_full'] (default), ... | |
seed = None, # Random seed: <int>, default = 0 | |
# Dataset. | |
data = None, # Training dataset (required): <path> | |
data_val = None, # Validation dataset: <path>, default = None. If none, data_val = data | |
dataloader = None, # Dataloader, string | |
cond = None, # Train conditional model based on dataset labels: <bool>, default = False | |
subset = None, # Train with only N images: <int>, default = all | |
mirror = None, # Augment dataset with x-flips: <bool>, default = False | |
# Base config. | |
cfg = None, # Base config: 'auto' (default), 'stylegan2', 'paper256', 'paper512', 'paper1024', 'cifar' | |
generator = None, # Path of the generator class | |
wdim = None, | |
zdim = None, | |
discriminator = None, # Path of the discriminator class | |
loss = None, | |
gamma = None, # Override R1 gamma: <float> | |
pr = None, | |
pl = None, # Train with path length regularization: <bool>, default = True | |
kimg = None, # Override training duration: <int> | |
batch = None, # Override batch size: <int> | |
truncation = None, # truncation for training: <float> | |
style_mix = None, # style mixing probability for training: <float> | |
ema = None, # Half-life of the exponential moving average (EMA) of generator weights: <int> | |
lr = None, # learning rate | |
lrt = None, # learning rate of transformer: <float> | |
# Discriminator augmentation. | |
aug = None, # Augmentation mode: 'ada' (default), 'noaug', 'fixed' | |
p = None, # Specify p for 'fixed' (required): <float> | |
target = None, # Override ADA target for 'ada': <float>, default = depends on aug | |
augpipe = None, # Augmentation pipeline: 'blit', 'geom', 'color', 'filter', 'noise', 'cutout', 'bg', 'bgc' (default), ..., 'bgcfnc' | |
# Transfer learning. | |
resume = None, # Load previous network: 'noresume' (default), 'ffhq256', 'ffhq512', 'ffhq1024', 'celebahq256', 'lsundog256', <file>, <url> | |
freezed = None, # Freeze-D: <int>, default = 0 discriminator layers | |
# Performance options (not included in desc). | |
fp32 = None, # Disable mixed-precision training: <bool>, default = False | |
nhwc = None, # Use NHWC memory format with FP16: <bool>, default = False | |
allow_tf32 = None, # Allow PyTorch to use TF32 for matmul and convolutions: <bool>, default = False | |
nobench = None, # Disable cuDNN benchmarking: <bool>, default = False | |
workers = None, # Override number of DataLoader workers: <int>, default = 3 | |
): | |
args = dnnlib.EasyDict() | |
# ------------------------------------------ | |
# General options: gpus, snap, metrics, seed | |
# ------------------------------------------ | |
if gpus is None: | |
gpus = 1 | |
assert isinstance(gpus, int) | |
if not (gpus >= 1 and gpus & (gpus - 1) == 0): | |
raise UserError('--gpus must be a power of two') | |
args.num_gpus = gpus | |
if snap is None: | |
snap = 50 | |
assert isinstance(snap, int) | |
if snap < 1: | |
raise UserError('--snap must be at least 1') | |
args.image_snapshot_ticks = snap | |
args.network_snapshot_ticks = snap | |
if metrics is None: | |
metrics = ['fid50k_full'] | |
assert isinstance(metrics, list) | |
if not all(metric_main.is_valid_metric(metric) for metric in metrics): | |
raise UserError('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) | |
args.metrics = metrics | |
if seed is None: | |
seed = 0 | |
assert isinstance(seed, int) | |
args.random_seed = seed | |
# ----------------------------------- | |
# Dataset: data, cond, subset, mirror | |
# ----------------------------------- | |
assert data is not None | |
assert isinstance(data, str) | |
if data_val is None: | |
data_val = data | |
if dataloader is None: | |
dataloader = 'datasets.dataset_512.ImageFolderMaskDataset' | |
args.training_set_kwargs = dnnlib.EasyDict(class_name=dataloader, path=data, | |
use_labels=True, max_size=None, xflip=False) | |
args.val_set_kwargs = dnnlib.EasyDict(class_name=dataloader, path=data_val, | |
use_labels=True, max_size=None, xflip=False) | |
args.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, num_workers=3, prefetch_factor=2) | |
try: | |
# training part | |
training_set = dnnlib.util.construct_class_by_name(**args.training_set_kwargs) # subclass of training.dataset.Dataset | |
args.training_set_kwargs.resolution = training_set.resolution # be explicit about resolution | |
args.training_set_kwargs.use_labels = training_set.has_labels # be explicit about labels | |
args.training_set_kwargs.max_size = len(training_set) # be explicit about dataset size | |
desc = training_set.name | |
# validation part | |
val_set = dnnlib.util.construct_class_by_name(**args.val_set_kwargs) | |
args.val_set_kwargs.resolution = val_set.resolution | |
args.val_set_kwargs.use_labels = val_set.has_labels | |
args.val_set_kwargs.max_size = len(val_set) | |
del training_set, val_set # conserve memory | |
except IOError as err: | |
raise UserError(f'--data: {err}') | |
if cond is None: | |
cond = False | |
assert isinstance(cond, bool) | |
if cond: | |
if not args.training_set_kwargs.use_labels or not args.val_set_kwargs.use_labels: | |
raise UserError('--cond=True requires labels specified in labels.json') | |
desc += '-cond' | |
else: | |
args.training_set_kwargs.use_labels = False | |
args.val_set_kwargs.use_labels = False | |
if subset is not None: | |
assert isinstance(subset, int) | |
if not 1 <= subset <= args.training_set_kwargs.max_size: | |
raise UserError(f'--subset must be between 1 and {args.training_set_kwargs.max_size}') | |
desc += f'-subset{subset}' | |
if subset < args.training_set_kwargs.max_size: | |
args.training_set_kwargs.max_size = subset | |
args.training_set_kwargs.random_seed = args.random_seed | |
if mirror is None: | |
mirror = False | |
assert isinstance(mirror, bool) | |
if mirror: | |
desc += '-mirror' | |
args.training_set_kwargs.xflip = True | |
# ------------------------------------ | |
# Base config: cfg, gamma, kimg, batch | |
# ------------------------------------ | |
if cfg is None: | |
cfg = 'auto' | |
assert isinstance(cfg, str) | |
desc += f'-{cfg}' | |
cfg_specs = { | |
'auto': dict(ref_gpus=-1, kimg=25000, mb=-1, mbstd=-1, fmaps=-1, lrate=-1, gamma=-1, ema=-1, ramp=0.05, map=2), # Populated dynamically based on resolution and GPU count. | |
'stylegan2': dict(ref_gpus=8, kimg=25000, mb=32, mbstd=4, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # Uses mixed-precision, unlike the original StyleGAN2. | |
'places256': dict(ref_gpus=8, kimg=50000, mb=64, mbstd=8, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), | |
'places512': dict(ref_gpus=8, kimg=50000, mb=64, mbstd=8, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), | |
'celeba512': dict(ref_gpus=8, kimg=25000, mb=64, mbstd=8, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), | |
} | |
assert cfg in cfg_specs | |
spec = dnnlib.EasyDict(cfg_specs[cfg]) | |
if cfg == 'auto': | |
desc += f'{gpus:d}' | |
spec.ref_gpus = gpus | |
res = args.training_set_kwargs.resolution | |
spec.mb = max(min(gpus * min(4096 // res, 32), 64), gpus) # keep gpu memory consumption at bay | |
spec.mbstd = min(spec.mb // gpus, 4) # other hyperparams behave more predictably if mbstd group size remains fixed | |
spec.fmaps = 1 if res >= 512 else 0.5 | |
spec.lrate = 0.002 if res >= 1024 else 0.0025 | |
spec.gamma = 0.0002 * (res ** 2) / spec.mb # heuristic formula | |
spec.ema = spec.mb * 10 / 32 | |
if generator is None: | |
generator = 'networks.mat.Generator' | |
else: | |
desc += '-' + generator.split('.')[1] | |
if discriminator is None: | |
discriminator = 'networks.mat.Discriminator' | |
if wdim is None: | |
wdim = 512 | |
if zdim is None: | |
zdim = 512 | |
args.G_kwargs = dnnlib.EasyDict(class_name=generator, z_dim=zdim, w_dim=wdim, mapping_kwargs=dnnlib.EasyDict(), synthesis_kwargs=dnnlib.EasyDict()) | |
args.D_kwargs = dnnlib.EasyDict(class_name=discriminator) | |
args.G_kwargs.synthesis_kwargs.channel_base = args.D_kwargs.channel_base = int(spec.fmaps * 32768) | |
args.G_kwargs.synthesis_kwargs.channel_max = args.D_kwargs.channel_max = 512 | |
args.G_kwargs.mapping_kwargs.num_layers = spec.map | |
# args.G_kwargs.synthesis_kwargs.num_fp16_res = args.D_kwargs.num_fp16_res = 4 # enable mixed-precision training | |
# args.G_kwargs.synthesis_kwargs.conv_clamp = args.D_kwargs.conv_clamp = 256 # clamp activations to avoid float16 overflow | |
# args.D_kwargs.epilogue_kwargs.mbstd_group_size = spec.mbstd | |
args.D_kwargs.mbstd_group_size = spec.mbstd | |
if lr is not None: | |
assert isinstance(lr, float) | |
spec.lrate = lr | |
desc += f'-lr{lr:g}' | |
if lrt is not None: | |
assert isinstance(lrt, float) | |
spec.lrt = lrt | |
desc += f'-lrt{lrt:g}' | |
if lrt is None: | |
args.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=spec.lrate, betas=[0, 0.99], eps=1e-8) | |
else: | |
args.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=spec.lrate, lrt=spec.lrt, betas=[0, 0.99], eps=1e-8) | |
args.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=spec.lrate, betas=[0, 0.99], eps=1e-8) | |
if loss is None: | |
loss = 'losses.loss.TwoStageLoss' | |
else: | |
desc += '-' + loss.split('.')[-1] | |
args.loss_kwargs = dnnlib.EasyDict(class_name=loss, r1_gamma=spec.gamma) | |
args.total_kimg = spec.kimg | |
args.batch_size = spec.mb | |
args.batch_gpu = spec.mb // spec.ref_gpus | |
args.ema_kimg = spec.ema | |
args.ema_rampup = spec.ramp | |
if cfg == 'cifar': | |
args.loss_kwargs.pl_weight = 0 # disable path length regularization | |
args.loss_kwargs.style_mixing_prob = 0 # disable style mixing | |
args.D_kwargs.architecture = 'orig' # disable residual skip connections | |
if gamma is not None: | |
assert isinstance(gamma, float) | |
if not gamma >= 0: | |
raise UserError('--gamma must be non-negative') | |
desc += f'-gamma{gamma:g}' | |
args.loss_kwargs.r1_gamma = gamma | |
if pr is not None: | |
assert isinstance(pr, float) | |
desc += f'-pr{pr:g}' | |
args.loss_kwargs.pcp_ratio = pr | |
if pl is None: | |
pl = True | |
assert isinstance(pl, bool) | |
if pl is False: | |
desc += f'-nopl' | |
args.loss_kwargs.pl_weight = 0 # disable path length regularization | |
if kimg is not None: | |
assert isinstance(kimg, int) | |
if not kimg >= 1: | |
raise UserError('--kimg must be at least 1') | |
desc += f'-kimg{kimg:d}' | |
args.total_kimg = kimg | |
if batch is not None: | |
assert isinstance(batch, int) | |
if not (batch >= 1 and batch % gpus == 0): | |
raise UserError('--batch must be at least 1 and divisible by --gpus') | |
desc += f'-batch{batch}' | |
args.batch_size = batch | |
args.batch_gpu = batch // gpus | |
if truncation is not None: | |
assert isinstance(truncation, float) | |
desc += '-tc' + str(truncation) | |
args.loss_kwargs.truncation_psi = truncation | |
if style_mix is not None: | |
assert isinstance(style_mix, float) | |
desc += '-sm' + str(style_mix) | |
args.loss_kwargs.style_mixing_prob = style_mix | |
if ema is not None: | |
assert isinstance(ema, int) | |
desc += '-ema' + str(ema) | |
args.ema_kimg = ema | |
# --------------------------------------------------- | |
# Discriminator augmentation: aug, p, target, augpipe | |
# --------------------------------------------------- | |
if aug is None: | |
aug = 'ada' | |
else: | |
assert isinstance(aug, str) | |
desc += f'-{aug}' | |
if aug == 'ada': | |
args.ada_target = 0.6 | |
elif aug == 'noaug': | |
pass | |
elif aug == 'fixed': | |
if p is None: | |
raise UserError(f'--aug={aug} requires specifying --p') | |
else: | |
raise UserError(f'--aug={aug} not supported') | |
if p is not None: | |
assert isinstance(p, float) | |
if aug != 'fixed': | |
raise UserError('--p can only be specified with --aug=fixed') | |
if not 0 <= p <= 1: | |
raise UserError('--p must be between 0 and 1') | |
desc += f'-p{p:g}' | |
args.augment_p = p | |
if target is not None: | |
assert isinstance(target, float) | |
if aug != 'ada': | |
raise UserError('--target can only be specified with --aug=ada') | |
if not 0 <= target <= 1: | |
raise UserError('--target must be between 0 and 1') | |
desc += f'-target{target:g}' | |
args.ada_target = target | |
assert augpipe is None or isinstance(augpipe, str) | |
if augpipe is None: | |
augpipe = 'bgc' | |
else: | |
if aug == 'noaug': | |
raise UserError('--augpipe cannot be specified with --aug=noaug') | |
desc += f'-{augpipe}' | |
augpipe_specs = { | |
'blit': dict(xflip=1, rotate90=1, xint=1), | |
'geom': dict(scale=1, rotate=1, aniso=1, xfrac=1), | |
'color': dict(brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1), | |
'filter': dict(imgfilter=1), | |
'noise': dict(noise=1), | |
'cutout': dict(cutout=1), | |
'bg': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1), | |
'bgc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1), | |
'bgcf': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1), | |
'bgcfn': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1), | |
'bgcfnc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1, cutout=1), | |
} | |
assert augpipe in augpipe_specs | |
if aug != 'noaug': | |
args.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', **augpipe_specs[augpipe]) | |
# ---------------------------------- | |
# Transfer learning: resume, freezed | |
# ---------------------------------- | |
resume_specs = { | |
'ffhq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res256-mirror-paper256-noaug.pkl', | |
'ffhq512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res512-mirror-stylegan2-noaug.pkl', | |
'ffhq1024': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res1024-mirror-stylegan2-noaug.pkl', | |
'celebahq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/celebahq-res256-mirror-paper256-kimg100000-ada-target0.5.pkl', | |
'lsundog256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/lsundog-res256-paper256-kimg100000-noaug.pkl', | |
} | |
assert resume is None or isinstance(resume, str) | |
if resume is None: | |
resume = 'noresume' | |
elif resume == 'noresume': | |
desc += '-noresume' | |
elif resume in resume_specs: | |
desc += f'-resume{resume}' | |
args.resume_pkl = resume_specs[resume] # predefined url | |
else: | |
desc += '-resumecustom' | |
args.resume_pkl = resume # custom path or url | |
if resume != 'noresume': | |
args.ada_kimg = 100 # make ADA react faster at the beginning | |
args.ema_rampup = None # disable EMA rampup | |
if freezed is not None: | |
assert isinstance(freezed, int) | |
if not freezed >= 0: | |
raise UserError('--freezed must be non-negative') | |
desc += f'-freezed{freezed:d}' | |
args.D_kwargs.block_kwargs.freeze_layers = freezed | |
# ------------------------------------------------- | |
# Performance options: fp32, nhwc, nobench, workers | |
# ------------------------------------------------- | |
if fp32 is None: | |
fp32 = False | |
assert isinstance(fp32, bool) | |
if fp32: | |
args.G_kwargs.synthesis_kwargs.num_fp16_res = args.D_kwargs.num_fp16_res = 0 | |
args.G_kwargs.synthesis_kwargs.conv_clamp = args.D_kwargs.conv_clamp = None | |
desc += '-fp32' | |
if nhwc is None: | |
nhwc = False | |
assert isinstance(nhwc, bool) | |
if nhwc: | |
args.G_kwargs.synthesis_kwargs.fp16_channels_last = args.D_kwargs.block_kwargs.fp16_channels_last = True | |
if nobench is None: | |
nobench = False | |
assert isinstance(nobench, bool) | |
if nobench: | |
args.cudnn_benchmark = False | |
if allow_tf32 is None: | |
allow_tf32 = False | |
assert isinstance(allow_tf32, bool) | |
if allow_tf32: | |
args.allow_tf32 = True | |
if workers is not None: | |
assert isinstance(workers, int) | |
if not workers >= 1: | |
raise UserError('--workers must be at least 1') | |
args.data_loader_kwargs.num_workers = workers | |
return desc, args | |
#---------------------------------------------------------------------------- | |
def subprocess_fn(rank, args, temp_dir): | |
dnnlib.util.Logger(file_name=os.path.join(args.run_dir, 'log.txt'), file_mode='a', should_flush=True) | |
# Init torch.distributed. | |
if args.num_gpus > 1: | |
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) | |
if os.name == 'nt': | |
init_method = 'file:///' + init_file.replace('\\', '/') | |
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus) | |
else: | |
init_method = f'file://{init_file}' | |
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus) | |
# Init torch_utils. | |
sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None | |
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) | |
if rank != 0: | |
custom_ops.verbosity = 'none' | |
# Execute training loop. | |
training_loop.training_loop(rank=rank, **args) | |
#---------------------------------------------------------------------------- | |
class CommaSeparatedList(click.ParamType): | |
name = 'list' | |
def convert(self, value, param, ctx): | |
_ = param, ctx | |
if value is None or value.lower() == 'none' or value == '': | |
return [] | |
return value.split(',') | |
#---------------------------------------------------------------------------- | |
# General options. | |
# Dataset. | |
# Base config. | |
# Discriminator augmentation. | |
# Transfer learning. | |
# Performance options. | |
def main(ctx, outdir, dry_run, **config_kwargs): | |
"""Train a GAN using the techniques described in the paper | |
"Training Generative Adversarial Networks with Limited Data". | |
Examples: | |
\b | |
# Train with custom dataset using 1 GPU. | |
python train.py --outdir=~/training-runs --data=~/mydataset.zip --gpus=1 | |
\b | |
# Train class-conditional CIFAR-10 using 2 GPUs. | |
python train.py --outdir=~/training-runs --data=~/datasets/cifar10.zip \\ | |
--gpus=2 --cfg=cifar --cond=1 | |
\b | |
# Transfer learn MetFaces from FFHQ using 4 GPUs. | |
python train.py --outdir=~/training-runs --data=~/datasets/metfaces.zip \\ | |
--gpus=4 --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 | |
\b | |
# Reproduce original StyleGAN2 config F. | |
python train.py --outdir=~/training-runs --data=~/datasets/ffhq.zip \\ | |
--gpus=8 --cfg=stylegan2 --mirror=1 --aug=noaug | |
\b | |
Base configs (--cfg): | |
auto Automatically select reasonable defaults based on resolution | |
and GPU count. Good starting point for new datasets. | |
stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024. | |
paper256 Reproduce results for FFHQ and LSUN Cat at 256x256. | |
paper512 Reproduce results for BreCaHAD and AFHQ at 512x512. | |
paper1024 Reproduce results for MetFaces at 1024x1024. | |
cifar Reproduce results for CIFAR-10 at 32x32. | |
\b | |
Transfer learning source networks (--resume): | |
ffhq256 FFHQ trained at 256x256 resolution. | |
ffhq512 FFHQ trained at 512x512 resolution. | |
ffhq1024 FFHQ trained at 1024x1024 resolution. | |
celebahq256 CelebA-HQ trained at 256x256 resolution. | |
lsundog256 LSUN Dog trained at 256x256 resolution. | |
<PATH or URL> Custom network pickle. | |
""" | |
print('Start') | |
dnnlib.util.Logger(should_flush=True) | |
# Setup training options. | |
try: | |
run_desc, args = setup_training_loop_kwargs(**config_kwargs) | |
except UserError as err: | |
ctx.fail(err) | |
# Pick output directory. | |
prev_run_dirs = [] | |
if os.path.isdir(outdir): | |
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))] | |
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs] | |
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None] | |
cur_run_id = max(prev_run_ids, default=-1) + 1 | |
args.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{run_desc}') | |
assert not os.path.exists(args.run_dir) | |
# Print options. | |
print() | |
print('Training options:') | |
print(json.dumps(args, indent=2)) | |
print() | |
print(f'Output directory: {args.run_dir}') | |
print(f'Training data: {args.training_set_kwargs.path}') | |
print(f'Training duration: {args.total_kimg} kimg') | |
print(f'Number of GPUs: {args.num_gpus}') | |
print(f'Number of images: {args.training_set_kwargs.max_size}') | |
print(f'Image resolution: {args.training_set_kwargs.resolution}') | |
print(f'Conditional model: {args.training_set_kwargs.use_labels}') | |
print(f'Dataset x-flips: {args.training_set_kwargs.xflip}') | |
print() | |
print('Validation options:') | |
print(f'Validation data: {args.val_set_kwargs.path}') | |
print(f'Number of images: {args.val_set_kwargs.max_size}') | |
print(f'Image resolution: {args.val_set_kwargs.resolution}') | |
print(f'Conditional model: {args.val_set_kwargs.use_labels}') | |
print(f'Dataset x-flips: {args.val_set_kwargs.xflip}') | |
print() | |
# Dry run? | |
if dry_run: | |
print('Dry run; exiting.') | |
return | |
# Create output directory. | |
print('Creating output directory...') | |
os.makedirs(args.run_dir) | |
with open(os.path.join(args.run_dir, 'training_options.json'), 'wt') as f: | |
json.dump(args, f, indent=2) | |
# Launch processes. | |
print('Launching processes...') | |
torch.multiprocessing.set_start_method('spawn') | |
with tempfile.TemporaryDirectory() as temp_dir: | |
if args.num_gpus == 1: | |
subprocess_fn(rank=0, args=args, temp_dir=temp_dir) | |
else: | |
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus) | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
main() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |