|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import gradio as gr |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") |
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") |
|
|
|
def predict(input, history=[]): |
|
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') |
|
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) |
|
history = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id).tolist() |
|
response = tokenizer.decode(history[0]).split("<|endoftext|>") |
|
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] |
|
return response, history |
|
|
|
gr.Interface(fn=predict, |
|
inputs=["text", "state"], |
|
outputs=["chatbot", "state"]).launch() |