Spaces:
Runtime error
Runtime error
Royrotem100
commited on
Commit
•
b7358fc
1
Parent(s):
14bbdd9
Changes app.py to a server
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from http import HTTPStatus
|
4 |
-
import openai
|
5 |
from typing import Generator, List, Optional, Tuple, Dict
|
6 |
from urllib.error import HTTPError
|
7 |
from flask import Flask, request, jsonify
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
import threading
|
|
|
|
|
10 |
|
11 |
# Load the model and tokenizer
|
12 |
tokenizer = AutoTokenizer.from_pretrained("./dictalm2.0-instruct")
|
@@ -31,34 +32,50 @@ def messages_to_history(messages: Messages) -> Tuple[str, History]:
|
|
31 |
history.append([q['content'], r['content']])
|
32 |
return history
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
messages.append({'role': 'user', 'content': query.strip()})
|
43 |
|
44 |
-
#
|
45 |
-
formatted_text = "<s>
|
|
|
|
|
46 |
inputs = tokenizer(formatted_text, return_tensors='pt')
|
47 |
|
48 |
# Generate the output
|
49 |
outputs = model.generate(inputs['input_ids'], max_length=1024, temperature=0.7, top_p=0.9)
|
50 |
-
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
def run_flask():
|
58 |
app.run(host='0.0.0.0', port=5000)
|
59 |
|
|
|
60 |
# Run Flask in a separate thread
|
61 |
threading.Thread(target=run_flask).start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
with gr.Blocks(css='''
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from http import HTTPStatus
|
|
|
4 |
from typing import Generator, List, Optional, Tuple, Dict
|
5 |
from urllib.error import HTTPError
|
6 |
from flask import Flask, request, jsonify
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
import threading
|
9 |
+
import requests
|
10 |
+
|
11 |
|
12 |
# Load the model and tokenizer
|
13 |
tokenizer = AutoTokenizer.from_pretrained("./dictalm2.0-instruct")
|
|
|
32 |
history.append([q['content'], r['content']])
|
33 |
return history
|
34 |
|
35 |
+
|
36 |
+
# Flask app setup
|
37 |
+
app = Flask(__name__)
|
38 |
+
|
39 |
+
@app.route('/predict', methods=['POST'])
|
40 |
+
def predict():
|
41 |
+
data = request.json
|
42 |
+
input_text = data.get('text', '')
|
|
|
43 |
|
44 |
+
# Format the input text with instruction tokens
|
45 |
+
formatted_text = f"<s>[INST] {input_text} [/INST]"
|
46 |
+
|
47 |
+
# Tokenize the input
|
48 |
inputs = tokenizer(formatted_text, return_tensors='pt')
|
49 |
|
50 |
# Generate the output
|
51 |
outputs = model.generate(inputs['input_ids'], max_length=1024, temperature=0.7, top_p=0.9)
|
|
|
52 |
|
53 |
+
# Decode the output
|
54 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
+
|
56 |
+
return jsonify({"prediction": prediction})
|
57 |
|
58 |
def run_flask():
|
59 |
app.run(host='0.0.0.0', port=5000)
|
60 |
|
61 |
+
|
62 |
# Run Flask in a separate thread
|
63 |
threading.Thread(target=run_flask).start()
|
64 |
+
def model_chat(query: Optional[str], history: Optional[History]) -> Generator[Tuple[str, History], None, None]:
|
65 |
+
if query is None:
|
66 |
+
query = ''
|
67 |
+
if history is None:
|
68 |
+
history = []
|
69 |
+
if not query.strip():
|
70 |
+
return
|
71 |
+
|
72 |
+
response = requests.post("http://127.0.0.1:5000/predict", json={"text": query.strip()})
|
73 |
+
if response.status_code == 200:
|
74 |
+
prediction = response.json().get("prediction", "")
|
75 |
+
history.append((query, prediction))
|
76 |
+
yield prediction, history
|
77 |
+
else:
|
78 |
+
yield "Error: Unable to get a response from the model.", history
|
79 |
|
80 |
|
81 |
with gr.Blocks(css='''
|