Spaces:
Running
Running
import os | |
import re | |
import inflect | |
import torch | |
from tokenizers import Tokenizer | |
# Regular expression matching whitespace: | |
from unidecode import unidecode | |
_whitespace_re = re.compile(r'\s+') | |
# List of (regular expression, replacement) pairs for abbreviations: | |
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ | |
('mrs', 'misess'), | |
('mr', 'mister'), | |
('dr', 'doctor'), | |
('st', 'saint'), | |
('co', 'company'), | |
('jr', 'junior'), | |
('maj', 'major'), | |
('gen', 'general'), | |
('drs', 'doctors'), | |
('rev', 'reverend'), | |
('lt', 'lieutenant'), | |
('hon', 'honorable'), | |
('sgt', 'sergeant'), | |
('capt', 'captain'), | |
('esq', 'esquire'), | |
('ltd', 'limited'), | |
('col', 'colonel'), | |
('ft', 'fort'), | |
]] | |
def expand_abbreviations(text): | |
for regex, replacement in _abbreviations: | |
text = re.sub(regex, replacement, text) | |
return text | |
_inflect = inflect.engine() | |
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])') | |
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)') | |
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)') | |
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)') | |
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)') | |
_number_re = re.compile(r'[0-9]+') | |
def _remove_commas(m): | |
return m.group(1).replace(',', '') | |
def _expand_decimal_point(m): | |
return m.group(1).replace('.', ' point ') | |
def _expand_dollars(m): | |
match = m.group(1) | |
parts = match.split('.') | |
if len(parts) > 2: | |
return match + ' dollars' # Unexpected format | |
dollars = int(parts[0]) if parts[0] else 0 | |
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 | |
if dollars and cents: | |
dollar_unit = 'dollar' if dollars == 1 else 'dollars' | |
cent_unit = 'cent' if cents == 1 else 'cents' | |
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit) | |
elif dollars: | |
dollar_unit = 'dollar' if dollars == 1 else 'dollars' | |
return '%s %s' % (dollars, dollar_unit) | |
elif cents: | |
cent_unit = 'cent' if cents == 1 else 'cents' | |
return '%s %s' % (cents, cent_unit) | |
else: | |
return 'zero dollars' | |
def _expand_ordinal(m): | |
return _inflect.number_to_words(m.group(0)) | |
def _expand_number(m): | |
num = int(m.group(0)) | |
if num > 1000 and num < 3000: | |
if num == 2000: | |
return 'two thousand' | |
elif num > 2000 and num < 2010: | |
return 'two thousand ' + _inflect.number_to_words(num % 100) | |
elif num % 100 == 0: | |
return _inflect.number_to_words(num // 100) + ' hundred' | |
else: | |
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ') | |
else: | |
return _inflect.number_to_words(num, andword='') | |
def normalize_numbers(text): | |
text = re.sub(_comma_number_re, _remove_commas, text) | |
text = re.sub(_pounds_re, r'\1 pounds', text) | |
text = re.sub(_dollars_re, _expand_dollars, text) | |
text = re.sub(_decimal_number_re, _expand_decimal_point, text) | |
text = re.sub(_ordinal_re, _expand_ordinal, text) | |
text = re.sub(_number_re, _expand_number, text) | |
return text | |
def expand_numbers(text): | |
return normalize_numbers(text) | |
def lowercase(text): | |
return text.lower() | |
def collapse_whitespace(text): | |
return re.sub(_whitespace_re, ' ', text) | |
def convert_to_ascii(text): | |
return unidecode(text) | |
def basic_cleaners(text): | |
'''Basic pipeline that lowercases and collapses whitespace without transliteration.''' | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def transliteration_cleaners(text): | |
'''Pipeline for non-English text that transliterate to ASCII.''' | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = collapse_whitespace(text) | |
return text | |
def english_cleaners(text): | |
'''Pipeline for English text, including number and abbreviation expansion.''' | |
text = convert_to_ascii(text) | |
text = lowercase(text) | |
text = expand_numbers(text) | |
text = expand_abbreviations(text) | |
text = collapse_whitespace(text) | |
text = text.replace('"', '') | |
return text | |
def lev_distance(s1, s2): | |
if len(s1) > len(s2): | |
s1, s2 = s2, s1 | |
distances = range(len(s1) + 1) | |
for i2, c2 in enumerate(s2): | |
distances_ = [i2 + 1] | |
for i1, c1 in enumerate(s1): | |
if c1 == c2: | |
distances_.append(distances[i1]) | |
else: | |
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1]))) | |
distances = distances_ | |
return distances[-1] | |
DEFAULT_VOCAB_FILE = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data/tokenizer.json') | |
class VoiceBpeTokenizer: | |
def __init__(self, vocab_file=None, use_basic_cleaners=False): | |
self.tokenizer = Tokenizer.from_file( | |
DEFAULT_VOCAB_FILE if vocab_file is None else vocab_file | |
) | |
if use_basic_cleaners: | |
self.preprocess_text = basic_cleaners | |
else: | |
self.preprocess_text = english_cleaners | |
def encode(self, txt): | |
txt = self.preprocess_text(txt) | |
txt = txt.replace(' ', '[SPACE]') | |
return self.tokenizer.encode(txt).ids | |
def decode(self, seq): | |
if isinstance(seq, torch.Tensor): | |
seq = seq.cpu().numpy() | |
txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(' ', '') | |
txt = txt.replace('[SPACE]', ' ') | |
txt = txt.replace('[STOP]', '') | |
txt = txt.replace('[UNK]', '') | |
return txt | |