Rubens commited on
Commit
e6a6695
1 Parent(s): 4e3b49d

add matplotlib

Browse files
Files changed (2) hide show
  1. app.py +17 -5
  2. requirements.txt +1 -0
app.py CHANGED
@@ -16,7 +16,6 @@ import hashlib
16
  import gradio as gr
17
  import scann
18
 
19
-
20
  df=pd.read_csv("/home/user/app/Dubai_translated_best_2500.csv",sep=",",header=0)
21
  df=df.drop_duplicates()
22
  df=df.dropna()
@@ -148,7 +147,7 @@ cp_callback = tf.keras.callbacks.ModelCheckpoint(
148
  save_weights_only=True,
149
  save_freq=2)
150
 
151
- model.fit(cached_train, callbacks=[cp_callback],epochs=200)
152
 
153
  index=df["code"].map(lambda x: [model.movie_model(tf.constant(x))])
154
 
@@ -160,14 +159,27 @@ searcher = scann.scann_ops_pybind.builder(np.array(indice), 10, "dot_product").t
160
  num_leaves=1500, num_leaves_to_search=500, training_sample_size=df.shape[0]).score_brute_force(
161
  2, quantize=True).build()
162
 
 
 
163
  def predict(text):
164
  campos=str(text).lower()
165
  query=np.sum([model.user_model(tf.constant(campos.split()[i])) for i in range(0,len(campos.split()))],axis=0)
166
  neighbors, distances = searcher.search_batched([query])
167
  xx = df.iloc[neighbors[0],:].nome_vaga
168
- return xx
 
 
 
 
 
 
 
 
 
169
 
170
  demo = gr.Interface(fn=predict, inputs=gr.inputs.Textbox(label='CANDIDATE COMPETENCES - Click *Clear* before adding new input'), \
171
- outputs=gr.outputs.Textbox(label='SUGGESTED VACANCIES'),\
 
172
  css='div {margin-left: auto; margin-right: auto; width: 100%;\
173
- background-image: url("https://drive.google.com/uc?export=view&id=1KNnISAUcvh2Pt08f-EJZJYCIgkrKw3PI"); repeat 0 0;}').launch(share=False)
 
 
16
  import gradio as gr
17
  import scann
18
 
 
19
  df=pd.read_csv("/home/user/app/Dubai_translated_best_2500.csv",sep=",",header=0)
20
  df=df.drop_duplicates()
21
  df=df.dropna()
 
147
  save_weights_only=True,
148
  save_freq=2)
149
 
150
+ model.fit(cached_train, callbacks=[cp_callback],epochs=2)
151
 
152
  index=df["code"].map(lambda x: [model.movie_model(tf.constant(x))])
153
 
 
159
  num_leaves=1500, num_leaves_to_search=500, training_sample_size=df.shape[0]).score_brute_force(
160
  2, quantize=True).build()
161
 
162
+ import matplotlib.pyplot as plt
163
+
164
  def predict(text):
165
  campos=str(text).lower()
166
  query=np.sum([model.user_model(tf.constant(campos.split()[i])) for i in range(0,len(campos.split()))],axis=0)
167
  neighbors, distances = searcher.search_batched([query])
168
  xx = df.iloc[neighbors[0],:].nome_vaga
169
+ fig = plt.figure(figsize=(14,9))
170
+ plt.bar(list(xx),distances[0]*0.8*10)
171
+ plt.title('Degree of match')
172
+ plt.xlabel('Labels')
173
+ plt.xticks(rotation=270)
174
+
175
+ plt.ylabel('Distances')
176
+ for x, y in zip(list(range(0,10)),distances[0]*0.8*10):
177
+ plt.text(x, y, y, ha='center', va='bottom', fontsize=12, color='black')
178
+ return xx, fig
179
 
180
  demo = gr.Interface(fn=predict, inputs=gr.inputs.Textbox(label='CANDIDATE COMPETENCES - Click *Clear* before adding new input'), \
181
+ outputs=[gr.outputs.Textbox(label='SUGGESTED VACANCIES'),\
182
+ gr.Plot()],\
183
  css='div {margin-left: auto; margin-right: auto; width: 100%;\
184
+ background-image: url("https://drive.google.com/uc?export=view&id=1KNnISAUcvh2Pt08f-EJZJYCIgkrKw3PI"); repeat 0 0;}')\
185
+ .launch(share=False)
requirements.txt CHANGED
@@ -1,6 +1,7 @@
1
  nltk==3.6.5
2
  pandas==1.3.4
3
  numpy==1.22.4
 
4
  unidecode==1.2.0
5
  tensorflow==2.9.1
6
  scann==1.2.7
 
1
  nltk==3.6.5
2
  pandas==1.3.4
3
  numpy==1.22.4
4
+ matplotlib==3.4.3
5
  unidecode==1.2.0
6
  tensorflow==2.9.1
7
  scann==1.2.7