Spaces:
Runtime error
Runtime error
File size: 7,930 Bytes
c91b12b 565ed82 c91b12b 565ed82 c91b12b dd4a234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import gradio as gr
import torch
import os
import requests
import json
import cv2
from PIL import Image
from timeit import default_timer as timer
import numpy as np
import aiofiles
from transformers import AutoModel
from gtts import gTTS
import io
import time
from gtts.lang import _main_langs
AUDIO_DIR = 'audio_files'
MAX_FILE_AGE = 24 * 60 * 60
model = torch.hub.load('ultralytics/yolov5','yolov5s', pretrained=True)
#model1 = AutoModel.from_pretrained(model)
cnt = 0
def LCR(bbox,x_img, y_img):
x1 = bbox[0]/x_img
x2 = bbox[2]/x_img
if x1 < 0.2 and x2 < 0.2 :
location = "On the left"
elif x1 > 0.8 and x2 > 0.8:
location = "On the right"
elif x1 < 0.2 and (x2 <= 0.8 and x2 >= 0.2):
if (x1 + x2) < 0.4:
location = "On the left"
else:
location = "At the center"
elif x2 > 0.8 and (x1 <= 0.8 and x1 >= 0.2):
if (x1 + x2) > 1.6:
location = "On the right"
else:
location = "At the center"
else:
location = "At the center"
print(f"x1 {x1} x2 {x2} bbox0 {bbox[0]} bbox2 {bbox[2]} x_img {x_img} LocationLCR {location}")
return location
def ACB(bbox, x_img, y_img, location):
y1 = bbox[1]/y_img
y2 = bbox[3]/y_img
if location == "At the center":
if y1 < 0.33333 and y2 < 0.33333 :
location = "On the top"
elif y1 > 0.66667 and y2 > 0.66667:
location = "On the bottom"
elif y1 < 0.33333 and (y2 <= 0.66667 and y2 >= 0.33333):
if (y1 + y2) < 0.66667:
location = "On the top"
else:
location = "At the center"
elif y2 > 0.66667 and (y1 <= 0.66667 and y1 >= 0.33333):
if (y1 + y2) > 1.33333:
location = "On the bottom"
else:
location = "At the center"
else:
location = "At the center"
else:
pass
print(f"y1 {y1} y2 {y2} bbox1 {bbox[1]} bbox3 {bbox[3]} y_img {y_img} Location{location}")
return location
#print(bbox[0])
def imgae_to_text(data) :
count = {}
for index, infor in enumerate(data):
key = infor['Location'] + ':' + infor['Class']
if key in count:
count[key] += 1
else:
count[key] = 1
text = ""
for index1, infor1 in enumerate(count):
name_class =""
value = count[infor1]
parts = infor1.split(":")
if value > 1 :
vbare = "are"
if parts[1] =='person':
name_class = 'people'
else:
name_class = parts[1] + 's'
else:
name_class = parts[1]
vbare = "is"
text += parts[0] + ", there" + " " + vbare + " " + f"{value}" + " " + name_class +'.' +" "
return text
def delete_old_audio_files():
# delete audio files older than MAX_FILE_AGE
now = time.time()
for file_name in os.listdir(AUDIO_DIR):
file_path = os.path.join(AUDIO_DIR, file_name)
if now - os.path.getmtime(file_path) > MAX_FILE_AGE:
os.remove(file_path)
# list of supported TLDs
tlds = [
"com",
"ad",
"ae",
"com.af",
"com.ag",
"com.ai",
"com.ar",
"as",
"at",
"com.au",
"az",
"ba",
"com.bd",
"be",
"bf",
"bg",
"bj",
"br",
"bs",
"bt",
"co.bw",
"by",
"com.bz",
"ca",
"cd",
"ch",
"ci",
"co.ck",
"cl",
"cm",
"cn",
"com.co",
"co.cr",
"cv",
"dj",
"dm",
"com.do",
"dz",
"com.ec",
"ee",
"com.eg",
"es",
"et",
"fi",
"com.fj",
"fm",
"fr",
"ga",
"ge",
"gg",
"com.gh",
"com.gi",
"gl",
"gm",
"gr",
"com.gt",
"gy",
"com.hk",
"hn",
"ht",
"hr",
"hu",
"co.id",
"ie",
"co.il",
"im",
"co.in",
"iq",
"is",
"it",
"iw",
"je",
"com.je",
"jo",
"co.jp",
"co.ke",
"com.kh",
"ki",
"kg",
"co.kr",
"com.kw",
"kz",
"la",
"com.lb",
"li",
"lk",
"co.ls",
"lt",
"lu",
"lv",
"com.ly",
"com.ma",
"md",
"me",
"mg",
"mk",
"ml",
"mm",
"mn",
"ms",
"com.mt",
"mu",
"mv",
"mw",
"com.mx",
"com.my",
"co.mz",
"na",
"ng",
"ni",
"ne",
"nl",
"no",
"com.np",
"nr",
"nu",
"co.nz",
"com.om",
"pa",
"pe",
"pg",
"ph",
"pk",
"pl",
"pn",
"com.pr",
"ps",
"pt",
"com.py",
"com.qa",
"ro",
"ru",
"rw",
"com.sa",
"com.sb",
"sc",
"se",
"com.sg",
"sh",
"si",
"sk",
"com.sl",
"sn",
"so",
"sm",
"sr",
"st",
"com.sv",
"td",
"tg",
"co.th",
"com.tj",
"tl",
"tm",
"tn",
"to",
"com.tr",
"tt",
"com.tw",
"co.tz",
"com.ua",
"co.ug",
"co.uk",
"com,uy",
"co.uz",
"com.vc",
"co.ve",
"vg",
"co.vi",
"com.vn",
"vu",
"ws",
"rs",
"co.za",
"co.zm",
"co.zw",
"cat",
]
def text_to_speech(text, lang, tld):
# map the language name to its corresponding code
lang_codes = {lang_name: lang_code for lang_code, lang_name in _main_langs().items()}
lang_code = lang_codes[lang]
# create the text-to-speech audio
tts = gTTS(text, lang=lang_code, tld=tld)
fp = io.BytesIO()
tts.write_to_fp(fp)
fp.seek(0)
# create the audio directory if it does not exist
os.makedirs(AUDIO_DIR, exist_ok=True)
# generate a unique file name for the audio file
file_name = str(time.time()) + '.wav'
file_path = os.path.join(AUDIO_DIR, file_name)
# save the audio stream to a file
with open(file_path, 'wb') as f:
f.write(fp.read())
# delete old audio files
delete_old_audio_files()
# return the file path
return file_path, f.name
def turn_img_into_voice(frame, lang, tld):
start_time = timer()
x_img, y_img = frame.size
print(x_img,y_img)
global cnt
objects = []
prediction = model(frame)
for det in prediction.xyxy[0]:
class_id = int(det[5])
class_name = model.names[class_id]
confidence = float(det[4])
bbox = det[:4].tolist()
if(confidence >= 0.5):
location = LCR(bbox, x_img, y_img)
location = ACB(bbox, x_img, y_img, location)
# Save the results to the list
objects.append({
'Class': class_name,
#'BoundingBox': bbox,
'Location': location,
'Confidence': confidence
})
with open('{:05d}.json'.format(cnt) , 'w') as f:
json.dump(objects, f)
text = imgae_to_text(objects)
file_path, f_name = text_to_speech(text, lang, tld)
pred_time = round(timer() - start_time, 5)
return file_path, f_name, pred_time
#path = [["D:/cuoc_thi/test_img/364452351_843427357389915_7340823319235373312_n.jpg"],["D:/cuoc_thi/test_img/download.jpg"],["D:/cuoc_thi/test_img/tong-hop-cac-mau-gia-ke-de-bat-dia-thong-minh-hot-nhat-2.jpg"]]
iface = gr.Interface(fn=turn_img_into_voice,
inputs=["pil",
gr.inputs.Dropdown(choices=list(_main_langs().values()), label="Select language:", default='English'),
gr.inputs.Dropdown(choices=[tld for tld in tlds], label="Select TLD:", default="com")],
outputs=[gr.Audio(label="Audio", autoplay=True),
gr.File(label="Audio File"),
gr.Number(label="Prediction time (s)")],
#examples=path,
allow_flagging="never",
live=True)
iface.launch(enable_queue=True, inline=False) |