File size: 7,930 Bytes
c91b12b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565ed82
c91b12b
 
 
 
 
 
 
 
 
565ed82
c91b12b
 
 
dd4a234
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import gradio as gr
import torch
import os
import requests
import json
import cv2
from PIL import Image
from timeit import default_timer as timer
import numpy as np
import aiofiles
from transformers import AutoModel
from gtts import gTTS
import io
import time
from gtts.lang import _main_langs

AUDIO_DIR = 'audio_files'
MAX_FILE_AGE = 24 * 60 * 60
model = torch.hub.load('ultralytics/yolov5','yolov5s', pretrained=True)
#model1 = AutoModel.from_pretrained(model)
cnt = 0
def LCR(bbox,x_img, y_img):
    x1 = bbox[0]/x_img
    x2 = bbox[2]/x_img
    if x1 < 0.2 and x2 < 0.2 :
        location = "On the left"
    elif x1 > 0.8 and x2 > 0.8:
        location = "On the right"
    elif x1 < 0.2 and (x2 <= 0.8 and x2 >= 0.2):
        if (x1 + x2) < 0.4:
            location = "On the left"
        else:
            location = "At the center" 
    elif x2 > 0.8 and (x1 <= 0.8 and x1 >= 0.2):
        if (x1 + x2) > 1.6:
            location = "On the right"
        else:
            location = "At the center" 
    else:
        location = "At the center"
    print(f"x1 {x1} x2 {x2} bbox0 {bbox[0]} bbox2 {bbox[2]} x_img {x_img} LocationLCR {location}")
    return location

def ACB(bbox, x_img, y_img, location):
    y1 = bbox[1]/y_img
    y2 = bbox[3]/y_img
    if location == "At the center":
        if y1 < 0.33333 and y2 < 0.33333 :
            location = "On the top"
        elif y1 > 0.66667 and y2 > 0.66667:
            location = "On the bottom"
        elif y1 < 0.33333 and (y2 <= 0.66667 and y2 >= 0.33333):
            if (y1 + y2) < 0.66667:
                location = "On the top"
            else:
                location = "At the center" 
        elif y2 > 0.66667 and (y1 <= 0.66667 and y1 >= 0.33333):
            if (y1 + y2) > 1.33333:
                location = "On the bottom"
            else:
                location = "At the center" 
        else:
            location = "At the center"
    else:
        pass
    print(f"y1 {y1} y2 {y2} bbox1 {bbox[1]} bbox3 {bbox[3]} y_img {y_img} Location{location}")
    
    return location
    #print(bbox[0])
def imgae_to_text(data) : 
    count = {}
    for index, infor in enumerate(data):
        key = infor['Location']  + ':' + infor['Class']
        if key in count:
            count[key] += 1
        else:
            count[key] = 1
    text = ""

    for index1, infor1 in enumerate(count):
        name_class =""
        value = count[infor1]
        parts = infor1.split(":")
        if value > 1 :
            vbare = "are"
            if parts[1] =='person':
                name_class = 'people'
            else:
                name_class = parts[1] + 's'
        else:
            name_class = parts[1] 
            vbare = "is"
        text +=  parts[0] + ", there" + " " + vbare + " " + f"{value}" + " " + name_class +'.' +" "
    return text   


def delete_old_audio_files():
    # delete audio files older than MAX_FILE_AGE
    now = time.time()
    for file_name in os.listdir(AUDIO_DIR):
        file_path = os.path.join(AUDIO_DIR, file_name)
        if now - os.path.getmtime(file_path) > MAX_FILE_AGE:
            os.remove(file_path)

# list of supported TLDs
tlds = [
    "com",
    "ad",
    "ae",
    "com.af",
    "com.ag",
    "com.ai",
    "com.ar",
    "as",
    "at",
    "com.au",
    "az",
    "ba",
    "com.bd",
    "be",
    "bf",
    "bg",
    "bj",
    "br",
    "bs",
    "bt",
    "co.bw",
    "by",
    "com.bz",
    "ca",
    "cd",
    "ch",
    "ci",
    "co.ck",
    "cl",
    "cm",
    "cn",
    "com.co",
    "co.cr",
    "cv",
    "dj",
    "dm",
    "com.do",
    "dz",
    "com.ec",
    "ee",
    "com.eg",
    "es",
    "et",
    "fi",
    "com.fj",
    "fm",
    "fr",
    "ga",
    "ge",
    "gg",
    "com.gh",
    "com.gi",
    "gl",
    "gm",
    "gr",
    "com.gt",
    "gy",
    "com.hk",
    "hn",
    "ht",
    "hr",
    "hu",
    "co.id",
    "ie",
    "co.il",
    "im",
    "co.in",
    "iq",
    "is",
    "it",
    "iw",
    "je",
    "com.je",
    "jo",
    "co.jp",
    "co.ke",
    "com.kh",
    "ki",
    "kg",
    "co.kr",
    "com.kw",
    "kz",
    "la",
    "com.lb",
    "li",
    "lk",
    "co.ls",
    "lt",
    "lu",
    "lv",
    "com.ly",
    "com.ma",
    "md",
    "me",
    "mg",
    "mk",
    "ml",
    "mm",
    "mn",
    "ms",
    "com.mt",
    "mu",
    "mv",
    "mw",
    "com.mx",
    "com.my",
    "co.mz",
    "na",
    "ng",
    "ni",
    "ne",
    "nl",
    "no",
    "com.np",
    "nr",
    "nu",
    "co.nz",
    "com.om",
    "pa",
    "pe",
    "pg",
    "ph",
    "pk",
    "pl",
    "pn",
    "com.pr",
    "ps",
    "pt",
    "com.py",
    "com.qa",
    "ro",
    "ru",
    "rw",
    "com.sa",
    "com.sb",
    "sc",
    "se",
    "com.sg",
    "sh",
    "si",
    "sk",
    "com.sl",
    "sn",
    "so",
    "sm",
    "sr",
    "st",
    "com.sv",
    "td",
    "tg",
    "co.th",
    "com.tj",
    "tl",
    "tm",
    "tn",
    "to",
    "com.tr",
    "tt",
    "com.tw",
    "co.tz",
    "com.ua",
    "co.ug",
    "co.uk",
    "com,uy",
    "co.uz",
    "com.vc",
    "co.ve",
    "vg",
    "co.vi",
    "com.vn",
    "vu",
    "ws",
    "rs",
    "co.za",
    "co.zm",
    "co.zw",
    "cat",
]

def text_to_speech(text, lang, tld):
    # map the language name to its corresponding code
    lang_codes = {lang_name: lang_code for lang_code, lang_name in _main_langs().items()}
    lang_code = lang_codes[lang]

    # create the text-to-speech audio
    tts = gTTS(text, lang=lang_code, tld=tld)
    fp = io.BytesIO()
    tts.write_to_fp(fp)
    fp.seek(0)

    # create the audio directory if it does not exist
    os.makedirs(AUDIO_DIR, exist_ok=True)

    # generate a unique file name for the audio file
    file_name = str(time.time()) + '.wav'
    file_path = os.path.join(AUDIO_DIR, file_name)

    # save the audio stream to a file
    with open(file_path, 'wb') as f:
        f.write(fp.read())

    # delete old audio files
    delete_old_audio_files()

    # return the file path
    return file_path, f.name


def turn_img_into_voice(frame, lang, tld):
    start_time = timer()
    x_img, y_img = frame.size
    print(x_img,y_img)
    global cnt
    objects = []

    prediction = model(frame)
    for det in prediction.xyxy[0]:
        class_id = int(det[5])
        class_name = model.names[class_id]
        confidence = float(det[4])
        bbox = det[:4].tolist()
        if(confidence >= 0.5):
            location = LCR(bbox, x_img, y_img)
            location = ACB(bbox, x_img, y_img, location)
            # Save the results to the list
            objects.append({
                'Class': class_name,
                #'BoundingBox': bbox,
                'Location': location,
                'Confidence': confidence
            })
        
        with open('{:05d}.json'.format(cnt)  , 'w') as f:
            json.dump(objects, f)
    text = imgae_to_text(objects)

    file_path, f_name = text_to_speech(text, lang, tld)
    pred_time = round(timer() - start_time, 5)
    return file_path, f_name, pred_time


#path = [["D:/cuoc_thi/test_img/364452351_843427357389915_7340823319235373312_n.jpg"],["D:/cuoc_thi/test_img/download.jpg"],["D:/cuoc_thi/test_img/tong-hop-cac-mau-gia-ke-de-bat-dia-thong-minh-hot-nhat-2.jpg"]]


iface = gr.Interface(fn=turn_img_into_voice, 
                     inputs=["pil",
                             gr.inputs.Dropdown(choices=list(_main_langs().values()), label="Select language:", default='English'),
                             gr.inputs.Dropdown(choices=[tld for tld in tlds], label="Select TLD:", default="com")], 
                     outputs=[gr.Audio(label="Audio", autoplay=True),
                              gr.File(label="Audio File"),
                              gr.Number(label="Prediction time (s)")],
                     #examples=path,
                     allow_flagging="never",
                     live=True)

iface.launch(enable_queue=True, inline=False)