|
import os
|
|
import torch
|
|
import fire
|
|
import gradio as gr
|
|
from PIL import Image
|
|
from functools import partial
|
|
import spaces
|
|
import cv2
|
|
import time
|
|
import numpy as np
|
|
from rembg import remove
|
|
from segment_anything import sam_model_registry, SamPredictor
|
|
|
|
import os
|
|
import torch
|
|
|
|
from PIL import Image
|
|
from typing import Dict, Optional, List
|
|
from dataclasses import dataclass
|
|
from mvdiffusion.data.single_image_dataset import SingleImageDataset
|
|
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
|
|
from einops import rearrange
|
|
import numpy as np
|
|
import subprocess
|
|
from datetime import datetime
|
|
from icecream import ic
|
|
def save_image(tensor):
|
|
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
|
|
|
im = Image.fromarray(ndarr)
|
|
return ndarr
|
|
|
|
|
|
def save_image_to_disk(tensor, fp):
|
|
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
|
|
|
im = Image.fromarray(ndarr)
|
|
im.save(fp)
|
|
return ndarr
|
|
|
|
|
|
def save_image_numpy(ndarr, fp):
|
|
im = Image.fromarray(ndarr)
|
|
im.save(fp)
|
|
|
|
|
|
weight_dtype = torch.float16
|
|
|
|
_TITLE = '''Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention'''
|
|
_DESCRIPTION = '''
|
|
<div>
|
|
Generate consistent high-resolution multi-view normals maps and color images.
|
|
</div>
|
|
<div>
|
|
The demo does not include the mesh reconstruction part, please visit <a href="https://github.com/pengHTYX/Era3D"><img src='https://img.shields.io/github/stars/pengHTYX/Era3D?style=social' style="display: inline-block; vertical-align: middle;"/></a> to get a textured mesh.
|
|
</div>
|
|
'''
|
|
_GPU_ID = 0
|
|
|
|
|
|
if not hasattr(Image, 'Resampling'):
|
|
Image.Resampling = Image
|
|
|
|
|
|
def sam_init():
|
|
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
|
|
model_type = "vit_h"
|
|
|
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
|
|
predictor = SamPredictor(sam)
|
|
return predictor
|
|
|
|
@spaces.GPU
|
|
def sam_segment(predictor, input_image, *bbox_coords):
|
|
bbox = np.array(bbox_coords)
|
|
image = np.asarray(input_image)
|
|
|
|
start_time = time.time()
|
|
predictor.set_image(image)
|
|
|
|
masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True)
|
|
|
|
print(f"SAM Time: {time.time() - start_time:.3f}s")
|
|
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
|
out_image[:, :, :3] = image
|
|
out_image_bbox = out_image.copy()
|
|
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
|
|
torch.cuda.empty_cache()
|
|
return Image.fromarray(out_image_bbox, mode='RGBA')
|
|
|
|
|
|
def expand2square(pil_img, background_color):
|
|
width, height = pil_img.size
|
|
if width == height:
|
|
return pil_img
|
|
elif width > height:
|
|
result = Image.new(pil_img.mode, (width, width), background_color)
|
|
result.paste(pil_img, (0, (width - height) // 2))
|
|
return result
|
|
else:
|
|
result = Image.new(pil_img.mode, (height, height), background_color)
|
|
result.paste(pil_img, ((height - width) // 2, 0))
|
|
return result
|
|
|
|
|
|
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
|
|
RES = 1024
|
|
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
|
|
if chk_group is not None:
|
|
segment = "Background Removal" in chk_group
|
|
rescale = "Rescale" in chk_group
|
|
if segment:
|
|
image_rem = input_image.convert('RGBA')
|
|
image_nobg = remove(image_rem, alpha_matting=True)
|
|
arr = np.asarray(image_nobg)[:, :, -1]
|
|
x_nonzero = np.nonzero(arr.sum(axis=0))
|
|
y_nonzero = np.nonzero(arr.sum(axis=1))
|
|
x_min = int(x_nonzero[0].min())
|
|
y_min = int(y_nonzero[0].min())
|
|
x_max = int(x_nonzero[0].max())
|
|
y_max = int(y_nonzero[0].max())
|
|
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
|
|
|
|
if rescale:
|
|
image_arr = np.array(input_image)
|
|
in_w, in_h = image_arr.shape[:2]
|
|
out_res = min(RES, max(in_w, in_h))
|
|
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
|
|
x, y, w, h = cv2.boundingRect(mask)
|
|
max_size = max(w, h)
|
|
ratio = 0.75
|
|
side_len = int(max_size / ratio)
|
|
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
|
|
center = side_len // 2
|
|
padded_image[center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w] = image_arr[y : y + h, x : x + w]
|
|
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
|
|
|
|
rgba_arr = np.array(rgba) / 255.0
|
|
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
|
|
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
|
|
else:
|
|
input_image = expand2square(input_image, (127, 127, 127, 0))
|
|
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
|
|
|
|
def load_era3d_pipeline(cfg):
|
|
|
|
|
|
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
|
cfg.pretrained_model_name_or_path,
|
|
torch_dtype=weight_dtype
|
|
)
|
|
|
|
return pipeline
|
|
|
|
|
|
from mvdiffusion.data.single_image_dataset import SingleImageDataset
|
|
|
|
|
|
def prepare_data(single_image, crop_size, cfg):
|
|
dataset = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white',
|
|
crop_size=crop_size, single_image=single_image, prompt_embeds_path=cfg.validation_dataset.prompt_embeds_path)
|
|
return dataset[0]
|
|
|
|
scene = 'scene'
|
|
def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, chk_group=None):
|
|
pipeline.to(device=f'cuda:{_GPU_ID}')
|
|
pipeline.unet.enable_xformers_memory_efficient_attention()
|
|
|
|
global scene
|
|
|
|
|
|
if chk_group is not None:
|
|
write_image = "Write Results" in chk_group
|
|
|
|
batch = prepare_data(single_image, crop_size, cfg)
|
|
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
seed = int(seed)
|
|
generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed)
|
|
|
|
|
|
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0)
|
|
num_views = imgs_in.shape[1]
|
|
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")
|
|
|
|
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']
|
|
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
|
|
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
|
|
|
|
|
|
imgs_in = imgs_in.to(device=f'cuda:{_GPU_ID}', dtype=weight_dtype)
|
|
prompt_embeddings = prompt_embeddings.to(device=f'cuda:{_GPU_ID}', dtype=weight_dtype)
|
|
|
|
out = pipeline(
|
|
imgs_in,
|
|
None,
|
|
prompt_embeds=prompt_embeddings,
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
output_type='pt',
|
|
num_images_per_prompt=1,
|
|
|
|
**cfg.pipe_validation_kwargs
|
|
).images
|
|
|
|
bsz = out.shape[0] // 2
|
|
normals_pred = out[:bsz]
|
|
images_pred = out[bsz:]
|
|
num_views = 6
|
|
if write_image:
|
|
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
|
cur_dir = os.path.join(cfg.save_dir, f"cropsize-{int(crop_size)}-cfg{guidance_scale:.1f}")
|
|
|
|
scene = 'scene'+datetime.now().strftime('@%Y%m%d-%H%M%S')
|
|
scene_dir = os.path.join(cur_dir, scene)
|
|
os.makedirs(scene_dir, exist_ok=True)
|
|
|
|
for j in range(num_views):
|
|
view = VIEWS[j]
|
|
normal = normals_pred[j]
|
|
color = images_pred[j]
|
|
|
|
normal_filename = f"normals_{view}_masked.png"
|
|
color_filename = f"color_{view}_masked.png"
|
|
normal = save_image_to_disk(normal, os.path.join(scene_dir, normal_filename))
|
|
color = save_image_to_disk(color, os.path.join(scene_dir, color_filename))
|
|
|
|
|
|
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)]
|
|
images_pred = [save_image(images_pred[i]) for i in range(bsz)]
|
|
|
|
out = images_pred + normals_pred
|
|
return images_pred, normals_pred
|
|
|
|
|
|
def process_3d(mode, data_dir, guidance_scale, crop_size):
|
|
dir = None
|
|
global scene
|
|
|
|
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
subprocess.run(
|
|
f'cd instant-nsr-pl && bash run.sh 0 {scene} exp_demo && cd ..',
|
|
shell=True,
|
|
)
|
|
import glob
|
|
|
|
obj_files = glob.glob(f'{cur_dir}/instant-nsr-pl/exp_demo/{scene}/*/save/*.obj', recursive=True)
|
|
print(obj_files)
|
|
if obj_files:
|
|
dir = obj_files[0]
|
|
return dir
|
|
|
|
|
|
@dataclass
|
|
class TestConfig:
|
|
pretrained_model_name_or_path: str
|
|
pretrained_unet_path:Optional[str]
|
|
revision: Optional[str]
|
|
validation_dataset: Dict
|
|
save_dir: str
|
|
seed: Optional[int]
|
|
validation_batch_size: int
|
|
dataloader_num_workers: int
|
|
|
|
save_mode: str
|
|
local_rank: int
|
|
|
|
pipe_kwargs: Dict
|
|
pipe_validation_kwargs: Dict
|
|
unet_from_pretrained_kwargs: Dict
|
|
validation_guidance_scales: List[float]
|
|
validation_grid_nrow: int
|
|
camera_embedding_lr_mult: float
|
|
|
|
num_views: int
|
|
camera_embedding_type: str
|
|
|
|
pred_type: str
|
|
regress_elevation: bool
|
|
enable_xformers_memory_efficient_attention: bool
|
|
|
|
cond_on_normals: bool
|
|
cond_on_colors: bool
|
|
|
|
regress_elevation: bool
|
|
regress_focal_length: bool
|
|
|
|
|
|
|
|
def run_demo():
|
|
from utils.misc import load_config
|
|
from omegaconf import OmegaConf
|
|
|
|
|
|
cfg = load_config("./configs/test_unclip-512-6view.yaml")
|
|
|
|
schema = OmegaConf.structured(TestConfig)
|
|
cfg = OmegaConf.merge(schema, cfg)
|
|
|
|
pipeline = load_era3d_pipeline(cfg)
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
predictor = sam_init()
|
|
|
|
|
|
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
|
button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200"
|
|
)
|
|
custom_css = '''#disp_image {
|
|
text-align: center; /* Horizontally center the content */
|
|
}'''
|
|
|
|
|
|
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
gr.Markdown('# ' + _TITLE)
|
|
gr.Markdown(_DESCRIPTION)
|
|
with gr.Row(variant='panel'):
|
|
with gr.Column(scale=1):
|
|
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image')
|
|
|
|
with gr.Column(scale=1):
|
|
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False)
|
|
|
|
processed_image = gr.Image(
|
|
type='pil',
|
|
label="Processed Image",
|
|
interactive=False,
|
|
|
|
image_mode='RGBA',
|
|
elem_id="disp_image",
|
|
visible=True,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(variant='panel'):
|
|
with gr.Column(scale=1):
|
|
example_folder = os.path.join(os.path.dirname(__file__), "./examples")
|
|
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
|
gr.Examples(
|
|
examples=example_fns,
|
|
inputs=[input_image],
|
|
outputs=[input_image],
|
|
cache_examples=False,
|
|
label='Examples (click one of the images below to start)',
|
|
examples_per_page=30,
|
|
)
|
|
with gr.Column(scale=1):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Accordion('Advanced options', open=True):
|
|
input_processing = gr.CheckboxGroup(
|
|
['Background Removal'],
|
|
label='Input Image Preprocessing',
|
|
value=['Background Removal'],
|
|
info='untick this, if masked image with alpha channel',
|
|
)
|
|
with gr.Column():
|
|
with gr.Accordion('Advanced options', open=False):
|
|
output_processing = gr.CheckboxGroup(
|
|
['Write Results'], label='write the results in mv_res folder', value=['Write Results']
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
scale_slider = gr.Slider(1, 5, value=3, step=1, label='Classifier Free Guidance Scale')
|
|
with gr.Column():
|
|
steps_slider = gr.Slider(15, 100, value=40, step=1, label='Number of Diffusion Inference Steps')
|
|
with gr.Row():
|
|
with gr.Column():
|
|
seed = gr.Number(600, label='Seed', info='100 for digital portraits')
|
|
with gr.Column():
|
|
crop_size = gr.Number(420, label='Crop size', info='380 for digital portraits')
|
|
|
|
mode = gr.Textbox('train', visible=False)
|
|
data_dir = gr.Textbox('outputs', visible=False)
|
|
|
|
|
|
run_btn = gr.Button('Generate Normals and Colors', variant='primary', interactive=True)
|
|
|
|
|
|
|
|
with gr.Row():
|
|
view_gallery = gr.Gallery(label='Multiview Images')
|
|
normal_gallery = gr.Gallery(label='Multiview Normals')
|
|
|
|
print('Launching...')
|
|
run_btn.click(
|
|
fn=partial(preprocess, predictor), inputs=[input_image, input_processing], outputs=[processed_image_highres, processed_image], queue=True
|
|
).success(
|
|
fn=partial(run_pipeline, pipeline, cfg),
|
|
inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size, output_processing],
|
|
outputs=[view_gallery, normal_gallery],
|
|
)
|
|
|
|
|
|
|
|
|
|
demo.queue().launch(share=True, max_threads=80)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
fire.Fire(run_demo) |