import os import torch import fire import gradio as gr from PIL import Image from functools import partial import spaces import cv2 import time import numpy as np from rembg import remove from segment_anything import sam_model_registry, SamPredictor import os import torch from PIL import Image from typing import Dict, Optional, List from dataclasses import dataclass from mvdiffusion.data.single_image_dataset import SingleImageDataset from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline from einops import rearrange import numpy as np import subprocess from datetime import datetime from icecream import ic def save_image(tensor): ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() # pdb.set_trace() im = Image.fromarray(ndarr) return ndarr def save_image_to_disk(tensor, fp): ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() # pdb.set_trace() im = Image.fromarray(ndarr) im.save(fp) return ndarr def save_image_numpy(ndarr, fp): im = Image.fromarray(ndarr) im.save(fp) weight_dtype = torch.float16 _TITLE = '''Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention''' _DESCRIPTION = '''
Generate consistent high-resolution multi-view normals maps and color images.
The demo does not include the mesh reconstruction part, please visit to get a textured mesh.
''' _GPU_ID = 0 if not hasattr(Image, 'Resampling'): Image.Resampling = Image def sam_init(): sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth") model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}") predictor = SamPredictor(sam) return predictor @spaces.GPU def sam_segment(predictor, input_image, *bbox_coords): bbox = np.array(bbox_coords) image = np.asarray(input_image) start_time = time.time() predictor.set_image(image) masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True) print(f"SAM Time: {time.time() - start_time:.3f}s") out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) out_image[:, :, :3] = image out_image_bbox = out_image.copy() out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 torch.cuda.empty_cache() return Image.fromarray(out_image_bbox, mode='RGBA') def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False): RES = 1024 input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) if chk_group is not None: segment = "Background Removal" in chk_group rescale = "Rescale" in chk_group if segment: image_rem = input_image.convert('RGBA') image_nobg = remove(image_rem, alpha_matting=True) arr = np.asarray(image_nobg)[:, :, -1] x_nonzero = np.nonzero(arr.sum(axis=0)) y_nonzero = np.nonzero(arr.sum(axis=1)) x_min = int(x_nonzero[0].min()) y_min = int(y_nonzero[0].min()) x_max = int(x_nonzero[0].max()) y_max = int(y_nonzero[0].max()) input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) # Rescale and recenter if rescale: image_arr = np.array(input_image) in_w, in_h = image_arr.shape[:2] out_res = min(RES, max(in_w, in_h)) ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) x, y, w, h = cv2.boundingRect(mask) max_size = max(w, h) ratio = 0.75 side_len = int(max_size / ratio) padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) center = side_len // 2 padded_image[center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w] = image_arr[y : y + h, x : x + w] rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) rgba_arr = np.array(rgba) / 255.0 rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) input_image = Image.fromarray((rgb * 255).astype(np.uint8)) else: input_image = expand2square(input_image, (127, 127, 127, 0)) return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS) def load_era3d_pipeline(cfg): # Load scheduler, tokenizer and models. pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( cfg.pretrained_model_name_or_path, torch_dtype=weight_dtype ) # sys.main_lock = threading.Lock() return pipeline from mvdiffusion.data.single_image_dataset import SingleImageDataset def prepare_data(single_image, crop_size, cfg): dataset = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white', crop_size=crop_size, single_image=single_image, prompt_embeds_path=cfg.validation_dataset.prompt_embeds_path) return dataset[0] scene = 'scene' def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, chk_group=None): pipeline.to(device=f'cuda:{_GPU_ID}') pipeline.unet.enable_xformers_memory_efficient_attention() global scene # pdb.set_trace() if chk_group is not None: write_image = "Write Results" in chk_group batch = prepare_data(single_image, crop_size, cfg) pipeline.set_progress_bar_config(disable=True) seed = int(seed) generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed) imgs_in = torch.cat([batch['imgs_in']]*2, dim=0) num_views = imgs_in.shape[1] imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W) normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") imgs_in = imgs_in.to(device=f'cuda:{_GPU_ID}', dtype=weight_dtype) prompt_embeddings = prompt_embeddings.to(device=f'cuda:{_GPU_ID}', dtype=weight_dtype) out = pipeline( imgs_in, None, prompt_embeds=prompt_embeddings, generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1, # return_elevation_focal=cfg.log_elevation_focal_length, **cfg.pipe_validation_kwargs ).images bsz = out.shape[0] // 2 normals_pred = out[:bsz] images_pred = out[bsz:] num_views = 6 if write_image: VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] cur_dir = os.path.join(cfg.save_dir, f"cropsize-{int(crop_size)}-cfg{guidance_scale:.1f}") scene = 'scene'+datetime.now().strftime('@%Y%m%d-%H%M%S') scene_dir = os.path.join(cur_dir, scene) os.makedirs(scene_dir, exist_ok=True) for j in range(num_views): view = VIEWS[j] normal = normals_pred[j] color = images_pred[j] normal_filename = f"normals_{view}_masked.png" color_filename = f"color_{view}_masked.png" normal = save_image_to_disk(normal, os.path.join(scene_dir, normal_filename)) color = save_image_to_disk(color, os.path.join(scene_dir, color_filename)) normals_pred = [save_image(normals_pred[i]) for i in range(bsz)] images_pred = [save_image(images_pred[i]) for i in range(bsz)] out = images_pred + normals_pred return images_pred, normals_pred def process_3d(mode, data_dir, guidance_scale, crop_size): dir = None global scene cur_dir = os.path.dirname(os.path.abspath(__file__)) subprocess.run( f'cd instant-nsr-pl && bash run.sh 0 {scene} exp_demo && cd ..', shell=True, ) import glob obj_files = glob.glob(f'{cur_dir}/instant-nsr-pl/exp_demo/{scene}/*/save/*.obj', recursive=True) print(obj_files) if obj_files: dir = obj_files[0] return dir @dataclass class TestConfig: pretrained_model_name_or_path: str pretrained_unet_path:Optional[str] revision: Optional[str] validation_dataset: Dict save_dir: str seed: Optional[int] validation_batch_size: int dataloader_num_workers: int # save_single_views: bool save_mode: str local_rank: int pipe_kwargs: Dict pipe_validation_kwargs: Dict unet_from_pretrained_kwargs: Dict validation_guidance_scales: List[float] validation_grid_nrow: int camera_embedding_lr_mult: float num_views: int camera_embedding_type: str pred_type: str # joint, or ablation regress_elevation: bool enable_xformers_memory_efficient_attention: bool cond_on_normals: bool cond_on_colors: bool regress_elevation: bool regress_focal_length: bool def run_demo(): from utils.misc import load_config from omegaconf import OmegaConf # parse YAML config to OmegaConf cfg = load_config("./configs/test_unclip-512-6view.yaml") # print(cfg) schema = OmegaConf.structured(TestConfig) cfg = OmegaConf.merge(schema, cfg) pipeline = load_era3d_pipeline(cfg) torch.set_grad_enabled(False) predictor = sam_init() custom_theme = gr.themes.Soft(primary_hue="blue").set( button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200" ) custom_css = '''#disp_image { text-align: center; /* Horizontally center the content */ }''' with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(variant='panel'): with gr.Column(scale=1): input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image') with gr.Column(scale=1): processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False) processed_image = gr.Image( type='pil', label="Processed Image", interactive=False, # height=320, image_mode='RGBA', elem_id="disp_image", visible=True, ) # with gr.Column(scale=1): # ## add 3D Model # obj_3d = gr.Model3D( # # clear_color=[0.0, 0.0, 0.0, 0.0], # label="3D Model", height=320, # # camera_position=[0,0,2.0] # ) with gr.Row(variant='panel'): with gr.Column(scale=1): example_folder = os.path.join(os.path.dirname(__file__), "./examples") example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] gr.Examples( examples=example_fns, inputs=[input_image], outputs=[input_image], cache_examples=False, label='Examples (click one of the images below to start)', examples_per_page=30, ) with gr.Column(scale=1): with gr.Row(): with gr.Column(): with gr.Accordion('Advanced options', open=True): input_processing = gr.CheckboxGroup( ['Background Removal'], label='Input Image Preprocessing', value=['Background Removal'], info='untick this, if masked image with alpha channel', ) with gr.Column(): with gr.Accordion('Advanced options', open=False): output_processing = gr.CheckboxGroup( ['Write Results'], label='write the results in mv_res folder', value=['Write Results'] ) with gr.Row(): with gr.Column(): scale_slider = gr.Slider(1, 5, value=3, step=1, label='Classifier Free Guidance Scale') with gr.Column(): steps_slider = gr.Slider(15, 100, value=40, step=1, label='Number of Diffusion Inference Steps') with gr.Row(): with gr.Column(): seed = gr.Number(600, label='Seed', info='100 for digital portraits') with gr.Column(): crop_size = gr.Number(420, label='Crop size', info='380 for digital portraits') mode = gr.Textbox('train', visible=False) data_dir = gr.Textbox('outputs', visible=False) # with gr.Row(): # method = gr.Radio(choices=['instant-nsr-pl', 'NeuS'], label='Method (Default: instant-nsr-pl)', value='instant-nsr-pl') run_btn = gr.Button('Generate Normals and Colors', variant='primary', interactive=True) # recon_btn = gr.Button('Reconstruct 3D model', variant='primary', interactive=True) # gr.Markdown("First click Generate button, then click Reconstruct button. Reconstruction may cost several minutes.") with gr.Row(): view_gallery = gr.Gallery(label='Multiview Images') normal_gallery = gr.Gallery(label='Multiview Normals') print('Launching...') run_btn.click( fn=partial(preprocess, predictor), inputs=[input_image, input_processing], outputs=[processed_image_highres, processed_image], queue=True ).success( fn=partial(run_pipeline, pipeline, cfg), inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size, output_processing], outputs=[view_gallery, normal_gallery], ) # recon_btn.click( # process_3d, inputs=[mode, data_dir, scale_slider, crop_size], outputs=[obj_3d] # ) demo.queue().launch(share=True, max_threads=80) if __name__ == '__main__': fire.Fire(run_demo)