import spaces import os import sys import os.path as path import torch import tempfile import gradio import shutil import math HERE_PATH = path.normpath(path.dirname(__file__)) # noqa MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) # noqa sys.path.insert(0, MASt3R_REPO_PATH) # noqa from mast3r.demo import get_reconstructed_scene from mast3r.model import AsymmetricMASt3R from mast3r.utils.misc import hash_md5 import mast3r.utils.path_to_dust3r # noqa from dust3r.demo import set_print_with_timestamp import matplotlib.pyplot as pl pl.ion() # for gpu >= Ampere and pytorch >= 1.12 torch.backends.cuda.matmul.allow_tf32 = True batch_size = 1 set_print_with_timestamp() weights_path = "naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric" device = 'cuda' if torch.cuda.is_available() else 'cpu' model = AsymmetricMASt3R.from_pretrained(weights_path).to(device) chkpt_tag = hash_md5(weights_path) tmpdirname = tempfile.mkdtemp(suffix='_mast3r_gradio_demo') image_size = 512 silent = True gradio_delete_cache = 7200 class FileState: def __init__(self, outfile_name=None): self.outfile_name = outfile_name def __del__(self): if self.outfile_name is not None and os.path.isfile(self.outfile_name): os.remove(self.outfile_name) self.outfile_name = None @spaces.GPU(duration=180) def local_get_reconstructed_scene(filelist, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics, **kw): lr1 = 0.07 niter1 = 500 lr2 = 0.014 niter2 = 200 optim_level = 'refine' mask_sky, clean_depth, transparent_cams = False, True, False if len(filelist) < 5: scenegraph_type = 'complete' winsize = 1 else: scenegraph_type = 'logwin' half_size = math.ceil((len(filelist) - 1) / 2) max_winsize = max(1, math.ceil(math.log(half_size, 2))) winsize = min(5, max_winsize) refid = 0 win_cyclic = False scene_state, outfile = get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, None, filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh=0, shared_intrinsics=shared_intrinsics, **kw) filestate = FileState(scene_state.outfile_name) scene_state.outfile_name = None del scene_state return filestate, outfile def run_example(snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, filelist, **kw): return local_get_reconstructed_scene(filelist, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics, **kw) css = """.gradio-container {margin: 0 !important; min-width: 100%};""" title = "MASt3R Demo" with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo: filestate = gradio.State(None) gradio.HTML('

3D Reconstruction with MASt3R

') gradio.HTML('

Upload one or multiple images (wait for them to be fully uploaded before hitting the run button). ' 'We tested with up to 18 images before running into the allocation timeout - set at 3 minutes but your mileage may vary. ' 'At the very bottom of this page, you will find an example. If you click on it, it will pull the 3D reconstruction from 7 images of the small Naver Labs Europe tower from cache. ' 'If you want to try larger image collections, you can find the more complete version of this demo that you can run locally ' 'and more details about the method at github.com/naver/mast3r. ' 'The checkpoint used in this demo is available at huggingface.co/naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.

') with gradio.Column(): inputfiles = gradio.File(file_count="multiple") snapshot = gradio.Image(None, visible=False) with gradio.Row(): matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=2., minimum=0., maximum=30., step=0.1, info="Before Fallback to Regr3D!") # adjust the confidence threshold min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) # adjust the camera size in the output pointcloud cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) with gradio.Row(): as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", info="Only optimize one set of intrinsics for all views") run_btn = gradio.Button("Run") outmodel = gradio.Model3D() examples = gradio.Examples( examples=[ [ os.path.join(HERE_PATH, 'mast3r/assets/NLE_tower/FF5599FD-768B-431A-AB83-BDA5FB44CB9D-83120-000041DADDE35483.jpg'), 0.0, 1.5, 0.2, True, False, [os.path.join(HERE_PATH, 'mast3r/assets/NLE_tower/01D90321-69C8-439F-B0B0-E87E7634741C-83120-000041DAE419D7AE.jpg'), os.path.join( HERE_PATH, 'mast3r/assets/NLE_tower/1AD85EF5-B651-4291-A5C0-7BDB7D966384-83120-000041DADF639E09.jpg'), os.path.join( HERE_PATH, 'mast3r/assets/NLE_tower/28EDBB63-B9F9-42FB-AC86-4852A33ED71B-83120-000041DAF22407A1.jpg'), os.path.join( HERE_PATH, 'mast3r/assets/NLE_tower/91E9B685-7A7D-42D7-B933-23A800EE4129-83120-000041DAE12C8176.jpg'), os.path.join( HERE_PATH, 'mast3r/assets/NLE_tower/2679C386-1DC0-4443-81B5-93D7EDE4AB37-83120-000041DADB2EA917.jpg'), os.path.join( HERE_PATH, 'mast3r/assets/NLE_tower/CDBBD885-54C3-4EB4-9181-226059A60EE0-83120-000041DAE0C3D612.jpg'), os.path.join(HERE_PATH, 'mast3r/assets/NLE_tower/FF5599FD-768B-431A-AB83-BDA5FB44CB9D-83120-000041DADDE35483.jpg')] ] ], inputs=[snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, inputfiles], outputs=[filestate, outmodel], fn=run_example, cache_examples="lazy", ) # events run_btn.click(fn=local_get_reconstructed_scene, inputs=[inputfiles, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics], outputs=[filestate, outmodel]) demo.launch(show_error=True, share=None, server_name=None, server_port=None) shutil.rmtree(tmpdirname)