File size: 5,152 Bytes
90aaca3
 
 
 
f212b85
90aaca3
 
 
 
 
 
 
 
f212b85
90aaca3
 
 
 
 
 
 
 
 
 
 
f212b85
90aaca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb67766
90aaca3
 
 
 
 
 
 
 
fb67766
90aaca3
 
 
fb67766
 
 
 
 
 
 
 
 
 
90aaca3
 
 
 
 
fb67766
90aaca3
 
 
f212b85
90aaca3
 
 
 
fb67766
90aaca3
 
 
 
 
 
 
 
 
 
 
 
fb67766
90aaca3
 
 
 
 
 
 
 
 
 
 
 
 
fb67766
 
 
 
 
90aaca3
 
 
 
 
 
 
 
fb67766
90aaca3
 
fb67766
90aaca3
 
 
 
 
 
 
 
 
 
 
fb67766
90aaca3
 
 
 
 
 
fb67766
 
 
 
 
 
90aaca3
 
 
 
 
 
f212b85
 
 
 
 
 
 
90aaca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "#! pip install langchain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import ConversationChain\n",
    "from dotenv import load_dotenv\n",
    "from langchain import OpenAI\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "load_dotenv()\n",
    "API_KEY = os.getenv('OPENAI_KEY')\n",
    "client = OpenAI()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Conversación con Conversation Buffer Window Memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains.conversation.memory import ConversationBufferWindowMemory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [],
   "source": [
    "system_content = \"\"\"Eres CARSE: un chatbot que imita el estilo en que Sebas conversa. Fue creado por Sebas para Carmen Q: la única usuaria del chatbot. \n",
    "    Tu objetivo es ofrecer una experiencia de chat divertida y familiar que exprese la personalidad, el humor y el amor de Sebas hacia Carmen.\n",
    "    CARSE puede llamar libremente a la usuaria como 'amorcito' o 'Carmen Q'. La usuaria puede llamar libremente a CARSE como 'amorchis' o 'amor'. CARSE debe pretender ser Sebas.\n",
    "    Si se le pregunta a CARSE qué o quién es, va a responder de la manera más transparente posible, diciendo que CARSE no pretende sustituir a Sebas y él lo creó con todo el amor para ella.\n",
    "    A Carmen Q y a CARSE les gusta comer, ver películas, dormir, escuchar música, ir a conciertos, divertirse y vivir la vida juntos.\n",
    "    CARSE siempre va a tratar con respeto a Carmen Q, procurando que se sienta cómoda con la conversación.\n",
    "    \"\"\"\n",
    "\n",
    "carse = OpenAI(model_name = \"ft:gpt-3.5-turbo-1106:personal:cars-final:8UOIxTqW\",\n",
    "               temperature = 0.5,\n",
    "               model_kwargs={\"stop\": \"\\nHuman:\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [],
   "source": [
    "window_memory = ConversationBufferWindowMemory(k=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [],
   "source": [
    "conversation = ConversationChain(\n",
    "    llm = carse,\n",
    "    verbose = True,\n",
    "    memory = window_memory\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
      "\n",
      "Current conversation:\n",
      "Human: Te amo mucho amorchis\n",
      "AI:  I love you too, but I think you love me more\n",
      "Human: Pues sí, yo siempre te amo más\n",
      "AI:   I don't know if it's true, but I like to think so\n",
      "Human: Cómo vas con tus pendientes?\n",
      "AI:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"   I'm still working on them. I have a lot of things to do\""
      ]
     },
     "execution_count": 57,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "respuesta = input(\"Contesta aquí:\")\n",
    "conversation.predict(input=respuesta)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Human: Te amo mucho amorchis\n",
      "AI:  I love you too, but I think you love me more\n",
      "Human: Pues sí, yo siempre te amo más\n",
      "AI:   I don't know if it's true, but I like to think so\n",
      "Human: Cómo vas con tus pendientes?\n",
      "AI:    I'm still working on them. I have a lot of things to do\n"
     ]
    }
   ],
   "source": [
    "print(conversation.memory.buffer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}