File size: 7,609 Bytes
a749f5b
 
 
 
 
 
 
 
49343af
ea3e7e4
a749f5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from openai import OpenAI
import gradio as gr
import os
import json
import html
import random
import datetime


api_key = os.environ.get('OPENAI_API_KEY')

if not api_key:
    raise RuntimeError("Cannot start without required API key. Please register for one at https://featherless.ai")

client = OpenAI(
    base_url="https://api.featherless.ai/v1",
    api_key=api_key
)

with open('./model-cache.json', 'r') as f_model_cache:
    model_cache = json.load(f_model_cache)
model_class_from_model_id = { model_id: model_class for model_class, model_ids in model_cache.items() for model_id in model_ids }

model_class_filter = {
    "mistral-v02-7b-std-lc": True,
    "llama3-8b-8k": True,
    "llama31-8b-16k": True,
    "llama2-solar-10b7-4k": True,
    "mistral-nemo-12b-lc": True,
    "llama2-13b-4k": True,
    "llama3-15b-8k": True,

    "qwen2-32b-lc":False,
    "llama3-70b-8k":False,
    "llama31-70b-16k": False,
    "qwen2-72b-lc":False,
    "mixtral-8x22b-lc":False,
    "llama3-405b-lc":False,
}

# we run a few other models here as well
REFLECTION="mattshumer/Reflection-Llama-3.1-70B"
QWEN25_72B="Qwen/Qwen2.5-72B"
NEMOTRON="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
bigger_whitelisted_models = [
    QWEN25_72B,
    NEMOTRON
]
# REFLECTION is in backup hosting
model_class_from_model_id[REFLECTION] = 'llama31-70b-16k'
model_class_from_model_id[NEMOTRON] = 'llama31-70b-16k'
def build_model_choices():
    all_choices = []
    for model_class in model_cache:
        if model_class not in model_class_filter:
            print(f"Warning: new model class {model_class}. Treating as blacklisted")
            continue

        if not model_class_filter[model_class]:
            continue
        all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ]

    all_choices += [ (f"{model_id}, {model_class_from_model_id[model_id]}", model_id) for model_id in bigger_whitelisted_models ]

    return all_choices
model_choices = build_model_choices()
def model_in_list(model):
    for label, id in model_choices:
        if id == model:
            return True
    
    return False

# let's use a random but different model each day.
key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
initial_model = o.choice(model_choices)[1]
initial_model = NEMOTRON
# this doesn't work in HF spaces because we're iframed :(
# def initial_model(referer=None):
#     return REFLECTION

#     if referer == 'http://127.0.0.1:7860/':
#         return 'Sao10K/Venomia-1.1-m7'

#     if referer and referer.startswith("https://huggingface.co/"):
#         possible_model = referer[23:]
#         full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), [])
#         model_is_supported = possible_model in full_model_list
#         if model_is_supported:
#             return possible_model

#     # let's use a random but different model each day.
#     key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
#     o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
#     return o.choice(model_choices)[1]


REFLECTION_SYSTEM_PROMPT = """You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""

def respond(message, history, model):
    # insist on that model is in model_choices
    if not model_in_list(model):
        raise RuntimeError(f"{model} is not supported in this hf space. Visit https://featherless.ai to see and use the complete model catalogue")
    
    history_openai_format = []
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human })
        history_openai_format.append({"role": "assistant", "content":assistant})
    history_openai_format.append({"role": "user", "content": message})

    if model == REFLECTION:
        history_openai_format = [
            {"role": "system", "content": REFLECTION_SYSTEM_PROMPT},
            *history_openai_format
        ]

    response = client.chat.completions.create(
        model=model,
        messages= history_openai_format,
        temperature=1.0,
        stream=True,
        max_tokens=2000,
        extra_headers={
            'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
            'X-Title': "HF's missing inference widget"
        }
    )

    partial_message = ""
    for chunk in response:
        if chunk.choices[0].delta.content is not None:
              content = chunk.choices[0].delta.content
              escaped_content = html.escape(content)
              partial_message += escaped_content
              yield partial_message

logo = open('./logo.svg').read()
logo_small = open('./logo-small.svg').read()
title_text="HuggingFace's missing inference widget"
css = """
.logo-mark { fill: #ffe184; }

/* from https://github.com/gradio-app/gradio/issues/4001
 * necessary as putting ChatInterface in gr.Blocks changes behaviour
 */

 .row {
    display: flex;
    justify-content: center;
 }

 .footer p {
    width: 450px;
 }

.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""

with gr.Blocks(title_text, css=css) as demo:
    gr.HTML(f"""
        <div class="header">
            <h1 class="row">HuggingFace's missing inference widget</h1>
            <h3 class="row">powered by</h3>
            <div class="row">
                <a href="https://featherless.ai">
                {logo}
                </a>
            </div>
        </div>
    """)

    # hidden_state = gr.State(value=initial_model)
    with gr.Row():
        model_selector = gr.Dropdown(
            label="Select your Model",
            choices=build_model_choices(),
            value=initial_model,
            # value=hidden_state,
            scale=4
        )
        gr.Button(
            value="Visit Model Card ↗️",
            scale=1
        ).click(
            inputs=[model_selector],
            js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }",
            fn=None,
        )

    gr.ChatInterface(
        respond,
        additional_inputs=[model_selector],
        head=""",
        <script>console.log("Hello from gradio!")</script>
        """,
        concurrency_limit=5
    )

    # logo_small_no_text = open('./logo-small-no-text.svg').read()
    # x_logo = open('./x-logo.svg').read()
    # discord_logo = open('./discord-logo.svg').read()
    
    gr.HTML(f"""
        <div class="footer">
            <div class="row">
                If you enjoyed this space,
                check out&nbsp;<a href="https://featherless.ai">featherless.ai</a>,
                and follow us&nbsp;<a href="https://x.com/featherless.ai">on twitter</a>!
            </div>
            <!-- <div class="row">If you enjoyed this space,</div>
            <div class="row">check out&nbsp;<a href="https://featherless.ai">featherless.ai</a>,</div>
            <div class="row">and follow us&nbsp;<a href="https://x.com/FeatherlessAI">on twitter</a>!</div> -->
        </div>
    """)
    # def update_initial_model_choice(request: gr.Request):
    #     return initial_model(request.headers.get('referer'))

    # demo.load(update_initial_model_choice, outputs=model_selector)

demo.launch()