|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import functools |
|
import os |
|
import pickle |
|
import sys |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
|
|
sys.path.insert(0, 'stylegan3') |
|
|
|
TITLE = 'Self-Distilled StyleGAN' |
|
DESCRIPTION = '''This is an unofficial demo for models provided in https://github.com/self-distilled-stylegan/self-distilled-internet-photos. |
|
|
|
Expected execution time on Hugging Face Spaces: 2s |
|
''' |
|
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples' |
|
ARTICLE = f'''## Generated images |
|
- truncation: 0.7 |
|
### Dogs |
|
- size: 1024x1024 |
|
- seed: 0-99 |
|
![Dogs]({SAMPLE_IMAGE_DIR}/dogs.jpg) |
|
### Elephants |
|
- size: 512x512 |
|
- seed: 0-99 |
|
![Elephants]({SAMPLE_IMAGE_DIR}/elephants.jpg) |
|
### Horses |
|
- size: 256x256 |
|
- seed: 0-99 |
|
![Horses]({SAMPLE_IMAGE_DIR}/horses.jpg) |
|
### Bicycles |
|
- size: 256x256 |
|
- seed: 0-99 |
|
![Bicycles]({SAMPLE_IMAGE_DIR}/bicycles.jpg) |
|
### Lions |
|
- size: 512x512 |
|
- seed: 0-99 |
|
![Lions]({SAMPLE_IMAGE_DIR}/lions.jpg) |
|
### Giraffes |
|
- size: 512x512 |
|
- seed: 0-99 |
|
![Giraffes]({SAMPLE_IMAGE_DIR}/giraffes.jpg) |
|
### Parrots |
|
- size: 512x512 |
|
- seed: 0-99 |
|
![Parrots]({SAMPLE_IMAGE_DIR}/parrots.jpg) |
|
|
|
<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.self-distilled-stylegan" alt="visitor badge"/></center> |
|
''' |
|
|
|
TOKEN = os.environ['TOKEN'] |
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--theme', type=str) |
|
parser.add_argument('--live', action='store_true') |
|
parser.add_argument('--share', action='store_true') |
|
parser.add_argument('--port', type=int) |
|
parser.add_argument('--disable-queue', |
|
dest='enable_queue', |
|
action='store_false') |
|
parser.add_argument('--allow-flagging', type=str, default='never') |
|
return parser.parse_args() |
|
|
|
|
|
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: |
|
return torch.from_numpy(np.random.RandomState(seed).randn( |
|
1, z_dim)).to(device).float() |
|
|
|
|
|
@torch.inference_mode() |
|
def generate_image(model_name: str, seed: int, truncation_psi: float, |
|
model_dict: dict[str, nn.Module], |
|
device: torch.device) -> np.ndarray: |
|
model = model_dict[model_name] |
|
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) |
|
|
|
z = generate_z(model.z_dim, seed, device) |
|
label = torch.zeros([1, model.c_dim], device=device) |
|
|
|
out = model(z, label, truncation_psi=truncation_psi) |
|
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
return out[0].cpu().numpy() |
|
|
|
|
|
def load_model(model_name: str, device: torch.device) -> nn.Module: |
|
path = hf_hub_download('hysts/Self-Distilled-StyleGAN', |
|
f'models/{model_name}_pytorch.pkl', |
|
use_auth_token=TOKEN) |
|
with open(path, 'rb') as f: |
|
model = pickle.load(f)['G_ema'] |
|
model.eval() |
|
model.to(device) |
|
with torch.inference_mode(): |
|
z = torch.zeros((1, model.z_dim)).to(device) |
|
label = torch.zeros([1, model.c_dim], device=device) |
|
model(z, label) |
|
return model |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
device = torch.device(args.device) |
|
|
|
model_names = [ |
|
'dogs_1024', |
|
'elephants_512', |
|
'horses_256', |
|
'bicycles_256', |
|
'lions_512', |
|
'giraffes_512', |
|
'parrots_512', |
|
] |
|
|
|
model_dict = {name: load_model(name, device) for name in model_names} |
|
|
|
func = functools.partial(generate_image, |
|
model_dict=model_dict, |
|
device=device) |
|
func = functools.update_wrapper(func, generate_image) |
|
|
|
gr.Interface( |
|
func, |
|
[ |
|
gr.inputs.Radio( |
|
model_names, type='value', default='dogs_1024', label='Model'), |
|
gr.inputs.Number(default=0, label='Seed'), |
|
gr.inputs.Slider( |
|
0, 2, step=0.05, default=0.7, label='Truncation psi'), |
|
], |
|
gr.outputs.Image(type='numpy', label='Output'), |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
article=ARTICLE, |
|
theme=args.theme, |
|
allow_flagging=args.allow_flagging, |
|
live=args.live, |
|
).launch( |
|
enable_queue=args.enable_queue, |
|
server_port=args.port, |
|
share=args.share, |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|