File size: 6,680 Bytes
78d75d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import itertools
import functools
import math
import multiprocessing
from pathlib import Path

import matplotlib
matplotlib.rcParams.update({'font.size': 24})
matplotlib.rcParams.update({
  "text.usetex": True,
  "text.latex.preamble": r"\usepackage{biolinum} \usepackage{libertineRoman} \usepackage{libertineMono} \usepackage{biolinum} \usepackage[libertine]{newtxmath}",
  'ps.usedistiller': "xpdf",
})

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import tqdm
from scipy.stats import wasserstein_distance

import pose_estimation


def cub(x, a, b, c):
    x2 = x * x
    x3 = x2 * x

    y = a * x3 + b * x2 + c * x

    return y


def subsample(a, p=0.0005, seed=0):
    np.random.seed(seed)
    N = len(a)
    inds = np.random.choice(range(N), size=int(p * N))
    a = a[inds].copy()

    return a


def read_cos_opt(path, fname="cos_hist.npy"):
    cos_opt = []
    for p in Path(path).rglob(fname):
        d = np.load(p)
        cos_opt.append(d)

    cos_opt = np.array(cos_opt)

    return cos_opt


def plot_hist(cos_opt_dir, hist_smpl_fpath, params, out_dir, bins=10, xy=None):
    cos_opt = read_cos_opt(cos_opt_dir)
    angle_opt = np.arccos(cos_opt)
    angle_opt2 = cub(angle_opt, *params)

    cos_opt2 = np.cos(angle_opt2)
    cos_smpl = np.load(hist_smpl_fpath)
    # cos_smpl = subsample(cos_smpl)
    print(cos_smpl.shape)

    cos_smpl = np.clip(cos_smpl, -1, 1)

    cos_opt = angle_opt
    cos_opt2 = angle_opt2
    cos_smpl = np.arccos(cos_smpl)

    cos_opt = 180 / math.pi * cos_opt
    cos_opt2 = 180 / math.pi * cos_opt2
    cos_smpl = 180 / math.pi * cos_smpl
    max_range = 90  # math.pi / 2

    xticks = [0, 15, 30, 45, 60, 75, 90]
    for idx, bone in enumerate(pose_estimation.SKELETON):
        i, j = bone
        i_name = pose_estimation.KPS[i]
        j_name = pose_estimation.KPS[j]
        if i_name != "Left Upper Leg":
            continue

        name = f"{i_name}_{j_name}"

        gs = gridspec.GridSpec(2, 4)
        fig = plt.figure(tight_layout=True, figsize=(16, 8), dpi=300)

        ax0 = fig.add_subplot(gs[0, 0])
        ax0.hist(cos_smpl[:, idx], bins=bins, range=(0, max_range), density=True)
        ax0.set_xticks(xticks)
        ax0.tick_params(labelbottom=False, labelleft=True)

        ax1 = fig.add_subplot(gs[1, 0], sharex=ax0)
        ax1.hist(cos_opt[:, idx], bins=bins, range=(0, max_range), density=True)
        ax1.set_xticks(xticks)

        if xy is not None:
            ax2 = fig.add_subplot(gs[:, 1:3])
            ax2.plot(xy[0], xy[1], linewidth=8)
            ax2.plot(xy[0], xy[0], linewidth=4, linestyle="dashed")
            ax2.set_xticks(xticks)
            ax2.set_yticks(xticks)

        ax3 = fig.add_subplot(gs[0, 3], sharey=ax0)
        ax3.hist(cos_opt2[:, idx], bins=bins, range=(0, max_range), density=True)
        ax3.set_xticks(xticks)
        ax3.tick_params(labelbottom=False, labelleft=False)

        ax4 = fig.add_subplot(gs[1, 3], sharex=ax3, sharey=ax1)
        alpha = 0.5
        ax4.hist(cos_opt[:, idx], bins=bins, range=(0, max_range), density=True, label=r"$\mathcal{B}_i$", alpha=alpha)
        ax4.hist(cos_opt2[:, idx], bins=bins, range=(0, max_range), density=True, label=r"$f(\mathcal{B}_i)$", alpha=alpha)
        ax4.hist(cos_smpl[:, idx], bins=bins, range=(0, max_range), density=True, label=r"$\mathcal{A}_i$", alpha=alpha)
        ax4.set_xticks(xticks)
        ax4.tick_params(labelbottom=True, labelleft=False)
        ax4.legend()

        fig.savefig(out_dir / f"hist_{name}.png")
        plt.close()


def kldiv(p_hist, q_hist):
    wd = wasserstein_distance(p_hist, q_hist)

    return wd


def calc_histogram(x, bins=10, range=(0, 1)):
    h, _ = np.histogram(x, bins=bins, range=range, density=True)

    return h

def step(params, angles_opt, p_hist, bone_idx=None):
    if sum(params) > 1:
        return math.inf, params

    kl = 0
    for i, _ in enumerate(pose_estimation.SKELETON):
        if bone_idx is not None and i != bone_idx:
            continue

        angles_opt2 = cub(angles_opt[:, i], *params)
        if angles_opt2.max() > 1 or angles_opt2.min() < 0:
            kl = math.inf

            break

        q_hist = calc_histogram(angles_opt2)

        kl += kldiv(p_hist[i], q_hist)

    return kl, params


def optimize(cos_opt_dir, hist_smpl_fpath, bone_idx=None):
    cos_opt = read_cos_opt(cos_opt_dir)
    angles_opt = np.arccos(cos_opt) / (math.pi / 2)
    cos_smpl = np.load(hist_smpl_fpath)
    # cos_smpl = subsample(cos_smpl)
    print(cos_smpl.shape)
    cos_smpl = np.clip(cos_smpl, -1, 1)
    mask = cos_smpl <= 1
    assert np.all(mask), (~mask).mean()
    mask = cos_smpl >= 0
    assert np.all(mask), (~mask).mean()
    angles_smpl = np.arccos(cos_smpl) / (math.pi / 2)
    p_hist = [
        calc_histogram(angles_smpl[:, i])
        for i, _ in enumerate(pose_estimation.SKELETON)
    ]

    with multiprocessing.Pool(8) as p:
        results = list(
            tqdm.tqdm(
                p.imap_unordered(
                    functools.partial(step, angles_opt=angles_opt, p_hist=p_hist, bone_idx=bone_idx),
                    itertools.product(
                        np.linspace(0, 20, 100),
                        np.linspace(-20, 20, 200),
                        np.linspace(-20, 1, 100),
                    ),
                ),
                total=(100 * 200 * 100),
            )
        )

    kls, params = zip(*results)
    ind = np.argmin(kls)
    best_params = params[ind]

    print(kls[ind], best_params)

    inds = np.argsort(kls)
    for i in inds[:10]:
        print(kls[i])
        print(params[i])
        print()

    return best_params


def main():
    cos_opt_dir = "paper_single2_150mse"
    hist_smpl_fpath = "./data/hist_smpl.npy"
    # hist_smpl_fpath = "./testtest.npy"
    params = optimize(cos_opt_dir, hist_smpl_fpath)
    # params = (1.2121212121212122, -1.105527638190953, 0.787878787878789)
    # params = (0.20202020202020202, 0.30150753768844396, 0.3636363636363633)
    print(params)

    x = np.linspace(0, math.pi / 2, 100)
    y = cub(x / (math.pi / 2), *params) * (math.pi / 2)
    x = x * 180 / math.pi
    y = y * 180 / math.pi

    out_dir = Path("hists")
    out_dir.mkdir(parents=True, exist_ok=True)
    plot_hist(cos_opt_dir, hist_smpl_fpath, params, out_dir, xy=(x, y))

    plt.figure(figsize=(4, 4), dpi=300)
    plt.plot(x, y, linewidth=6)
    plt.plot(x, x, linewidth=2, linestyle="dashed")
    xticks = [0, 15, 30, 45, 60, 75, 90]
    plt.xticks(xticks)
    plt.yticks(xticks)
    plt.axis("equal")
    plt.tight_layout()
    plt.savefig(out_dir / "new_out.png")


if __name__ == "__main__":
    main()