File size: 7,074 Bytes
5bd9834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import math

import cv2
import numpy as np

IMG_SIZE = (288, 384)
MEAN = np.array([0.485, 0.456, 0.406])
STD = np.array([0.229, 0.224, 0.225])

KPS = (
    "Head",
    "Neck",
    "Right Shoulder",
    "Right Arm",
    "Right Hand",
    "Left Shoulder",
    "Left Arm",
    "Left Hand",
    "Spine",
    "Hips",
    "Right Upper Leg",
    "Right Leg",
    "Right Foot",
    "Left Upper Leg",
    "Left Leg",
    "Left Foot",
    "Left Toe",
    "Right Toe",
)

SKELETON = (
    (0, 1),
    (1, 8),
    (8, 9),
    (9, 10),
    (9, 13),
    (10, 11),
    (11, 12),
    (13, 14),
    (14, 15),
    (1, 2),
    (2, 3),
    (3, 4),
    (1, 5),
    (5, 6),
    (6, 7),
    (15, 16),
    (12, 17),
)


OPENPOSE_TO_GESTURE = (
    0,  # 0 Head\n",
    1,  #   Neck\n",
    2,  # 2 Right Shoulder\n",
    3,  #   Right Arm\n",
    4,  # 4 Right Hand\n",
    5,  #   Left Shoulder\n",
    6,  # 6 Left Arm\n",
    7,  #   Left Hand\n",
    9,  # 8 Hips\n",
    10,  #   Right Upper Leg\n",
    11,  # 10Right Leg\n",
    12,  #   Right Foot\n",
    13,  # 12Left Upper Leg\n",
    14,  #   Left Leg\n",
    15,  # 14Left Foot\n",
    -1,  # \n",
    -1,  # 16\n",
    -1,  # \n",
    -1,  # 18\n",
    16,  #   Left Toe\n",
    -1,  # 20\n",
    -1,  # \n",
    17,  # 22Right Toe\n",
    -1,  # \n",
    -1,  # 24\n",
)


def transform(img):
    img = img.astype("float32") / 255

    img = (img - MEAN) / STD

    return np.transpose(img, axes=(2, 0, 1))


def get_affine_transform(
    center,
    scale,
    rot,
    output_size,
    shift=np.array([0, 0], dtype=np.float32),
    inv=0,
    pixel_std=200,
):
    if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
        scale = np.array([scale, scale])

    scale_tmp = scale * pixel_std
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = get_dir([0, src_w * -0.5], rot_rad)
    dst_dir = np.array([0, dst_w * -0.5], np.float32)
    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def get_3rd_point(a, b):
    direct = a - b
    return b + np.array([-direct[1], direct[0]], dtype=np.float32)


def get_dir(src_point, rot_rad):
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)

    src_result = [0, 0]
    src_result[0] = src_point[0] * cs - src_point[1] * sn
    src_result[1] = src_point[0] * sn + src_point[1] * cs

    return src_result


def process_image(path, input_img_size, pixel_std=200):
    data_numpy = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
    # BUG HERE. Must be uncommented
    # data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB)

    h, w = data_numpy.shape[:2]
    c = np.array([w / 2, h / 2], dtype=np.float32)

    aspect_ratio = input_img_size[0] / input_img_size[1]
    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio

    s = np.array([w / pixel_std, h / pixel_std], dtype=np.float32) * 1.25
    r = 0
    trans = get_affine_transform(c, s, r, input_img_size, pixel_std=pixel_std)
    input = cv2.warpAffine(data_numpy, trans, input_img_size, flags=cv2.INTER_LINEAR)

    input = transform(input)

    return input, data_numpy, c, s


def get_final_preds(batch_heatmaps, center, scale, post_process=False):
    coords, maxvals = get_max_preds(batch_heatmaps)

    heatmap_height = batch_heatmaps.shape[2]
    heatmap_width = batch_heatmaps.shape[3]

    # post-processing
    if post_process:
        for n in range(coords.shape[0]):
            for p in range(coords.shape[1]):
                hm = batch_heatmaps[n][p]
                px = int(math.floor(coords[n][p][0] + 0.5))
                py = int(math.floor(coords[n][p][1] + 0.5))
                if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
                    diff = np.array(
                        [
                            hm[py][px + 1] - hm[py][px - 1],
                            hm[py + 1][px] - hm[py - 1][px],
                        ]
                    )
                    coords[n][p] += np.sign(diff) * 0.25

    preds = coords.copy()

    # Transform back
    for i in range(coords.shape[0]):
        preds[i] = transform_preds(
            coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
        )

    return preds, maxvals


def transform_preds(coords, center, scale, output_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale, 0, output_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords


def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.0]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]


def get_max_preds(batch_heatmaps):
    """
    get predictions from score maps
    heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
    """
    assert isinstance(
        batch_heatmaps, np.ndarray
    ), "batch_heatmaps should be numpy.ndarray"
    assert batch_heatmaps.ndim == 4, "batch_images should be 4-ndim"

    batch_size = batch_heatmaps.shape[0]
    num_joints = batch_heatmaps.shape[1]
    width = batch_heatmaps.shape[3]
    heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
    idx = np.argmax(heatmaps_reshaped, 2)
    maxvals = np.amax(heatmaps_reshaped, 2)

    maxvals = maxvals.reshape((batch_size, num_joints, 1))
    idx = idx.reshape((batch_size, num_joints, 1))

    preds = np.tile(idx, (1, 1, 2)).astype(np.float32)

    preds[:, :, 0] = (preds[:, :, 0]) % width
    preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)

    pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
    pred_mask = pred_mask.astype(np.float32)

    preds *= pred_mask
    return preds, maxvals


def infer_single_image(model, img_path, input_img_size=(288, 384), return_kps=True):
    img_path = str(img_path)
    pose_input, img, center, scale = process_image(
        img_path, input_img_size=input_img_size
    )
    model.setInput(pose_input[None])
    predicted_heatmap = model.forward()

    if not return_kps:
        return predicted_heatmap.squeeze(0)

    predicted_keypoints, confidence = get_final_preds(
        predicted_heatmap, center[None], scale[None], post_process=True
    )

    (predicted_keypoints, confidence, predicted_heatmap,) = (
        predicted_keypoints.squeeze(0),
        confidence.squeeze(0),
        predicted_heatmap.squeeze(0),
    )

    return img, predicted_keypoints, confidence, predicted_heatmap