kbrodt commited on
Commit
004c9d7
1 Parent(s): 8cdc22a

Upload selfcontact.diff

Browse files
Files changed (1) hide show
  1. patches/selfcontact.diff +159 -0
patches/selfcontact.diff ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ +++ venv/lib/python3.10/site-packages/selfcontact/body_segmentation.py
2
+ @@ -14,6 +14,8 @@
3
+ #
4
+ # Contact: [email protected]
5
+
6
+ +from pathlib import Path
7
+ +
8
+ import torch
9
+ import trimesh
10
+ import torch.nn as nn
11
+ @@ -22,6 +24,17 @@
12
+
13
+ from .utils.mesh import winding_numbers
14
+
15
+ +
16
+ +def load_pkl(path):
17
+ + with open(path, "rb") as fin:
18
+ + return pickle.load(fin)
19
+ +
20
+ +
21
+ +def save_pkl(obj, path):
22
+ + with open(path, "wb") as fout:
23
+ + pickle.dump(obj, fout)
24
+ +
25
+ +
26
+ class BodySegment(nn.Module):
27
+ def __init__(self,
28
+ name,
29
+ @@ -63,9 +76,17 @@
30
+ self.register_buffer('segment_faces', segment_faces)
31
+
32
+ # create vector to select vertices form faces
33
+ - tri_vidx = []
34
+ - for ii in range(faces.max().item()+1):
35
+ - tri_vidx += [torch.nonzero(faces==ii)[0].tolist()]
36
+ + segments_folder = Path(segments_folder)
37
+ + tri_vidx_path = segments_folder / "tri_vidx.pkl"
38
+ + if not tri_vidx_path.is_file():
39
+ + tri_vidx = []
40
+ + for ii in range(faces.max().item()+1):
41
+ + tri_vidx += [torch.nonzero(faces==ii)[0].tolist()]
42
+ +
43
+ + save_pkl(tri_vidx, tri_vidx_path)
44
+ + else:
45
+ + tri_vidx = load_pkl(tri_vidx_path)
46
+ +
47
+ self.register_buffer('tri_vidx', torch.tensor(tri_vidx))
48
+
49
+ def create_band_faces(self):
50
+ @@ -149,7 +170,7 @@
51
+ self.segmentation = {}
52
+ for idx, name in enumerate(names):
53
+ self.segmentation[name] = BodySegment(name, faces, segments_folder,
54
+ - model_type).to('cuda')
55
+ + model_type).to(device)
56
+
57
+ def batch_has_self_isec_verts(self, vertices):
58
+ """
59
+ +++ venv/lib/python3.10/site-packages/selfcontact/selfcontact.py
60
+ @@ -41,6 +41,7 @@
61
+ test_segments=True,
62
+ compute_hd=False,
63
+ buffer_geodists=False,
64
+ + device="cuda",
65
+ ):
66
+ super().__init__()
67
+
68
+ @@ -95,7 +96,7 @@
69
+ if self.test_segments:
70
+ sxseg = pickle.load(open(segments_bounds_path, 'rb'))
71
+ self.segments = BatchBodySegment(
72
+ - [x for x in sxseg.keys()], faces, segments_folder, self.model_type
73
+ + [x for x in sxseg.keys()], faces, segments_folder, self.model_type, device=device,
74
+ )
75
+
76
+ # load regressor to get high density mesh
77
+ @@ -106,7 +107,7 @@
78
+ torch.tensor(hd_operator['values']),
79
+ torch.Size(hd_operator['size']))
80
+ self.register_buffer('hd_operator',
81
+ - torch.tensor(hd_operator).float())
82
+ + hd_operator.clone().detach().float())
83
+
84
+ with open(point_vert_corres_path, 'rb') as f:
85
+ hd_geovec = pickle.load(f)['faces_vert_is_sampled_from']
86
+ @@ -135,9 +136,13 @@
87
+ # split because of memory into two chunks
88
+ exterior = torch.zeros((bs, nv), device=vertices.device,
89
+ dtype=torch.bool)
90
+ - exterior[:, :5000] = winding_numbers(vertices[:,:5000,:],
91
+ + exterior[:, :3000] = winding_numbers(vertices[:,:3000,:],
92
+ triangles).le(0.99)
93
+ - exterior[:, 5000:] = winding_numbers(vertices[:,5000:,:],
94
+ + exterior[:, 3000:6000] = winding_numbers(vertices[:,3000:6000,:],
95
+ + triangles).le(0.99)
96
+ + exterior[:, 6000:9000] = winding_numbers(vertices[:,6000:9000,:],
97
+ + triangles).le(0.99)
98
+ + exterior[:, 9000:] = winding_numbers(vertices[:,9000:,:],
99
+ triangles).le(0.99)
100
+
101
+ # check if intersections happen within segments
102
+ @@ -173,9 +178,13 @@
103
+ # split because of memory into two chunks
104
+ exterior = torch.zeros((bs, np), device=points.device,
105
+ dtype=torch.bool)
106
+ - exterior[:, :6000] = winding_numbers(points[:,:6000,:],
107
+ + exterior[:, :3000] = winding_numbers(points[:,:3000,:],
108
+ + triangles).le(0.99)
109
+ + exterior[:, 3000:6000] = winding_numbers(points[:,3000:6000,:],
110
+ triangles).le(0.99)
111
+ - exterior[:, 6000:] = winding_numbers(points[:,6000:,:],
112
+ + exterior[:, 6000:9000] = winding_numbers(points[:,6000:9000,:],
113
+ + triangles).le(0.99)
114
+ + exterior[:, 9000:] = winding_numbers(points[:,9000:,:],
115
+ triangles).le(0.99)
116
+
117
+ return exterior
118
+ @@ -371,6 +380,23 @@
119
+
120
+ return hd_v2v_mins, hd_exteriors, hd_points, hd_faces_in_contacts
121
+
122
+ + def verts_in_contact(self, vertices, return_idx=False):
123
+ +
124
+ + # get pairwise distances of vertices
125
+ + v2v = self.get_pairwise_dists(vertices, vertices, squared=True)
126
+ +
127
+ + # mask v2v with eucledean and geodesic dsitance
128
+ + euclmask = v2v < self.euclthres**2
129
+ + mask = euclmask * self.geomask
130
+ +
131
+ + # find closes vertex in contact
132
+ + in_contact = mask.sum(1) > 0
133
+ +
134
+ + if return_idx:
135
+ + in_contact = torch.where(in_contact)
136
+ +
137
+ + return in_contact
138
+ +
139
+
140
+
141
+ class SelfContactSmall(nn.Module):
142
+ +++ venv/lib/python3.10/site-packages/selfcontact/utils/mesh.py
143
+ @@ -82,7 +82,7 @@
144
+ if valid_vals > 0:
145
+ loss = (mask * dists).sum() / valid_vals
146
+ else:
147
+ - loss = torch.Tensor([0]).cuda()
148
+ + loss = mask.new_tensor([0])
149
+ return loss
150
+
151
+ def batch_index_select(inp, dim, index):
152
+ @@ -103,6 +103,7 @@
153
+ xx = torch.bmm(x, x.transpose(2, 1))
154
+ yy = torch.bmm(y, y.transpose(2, 1))
155
+ zz = torch.bmm(x, y.transpose(2, 1))
156
+ + use_cuda = x.device.type == "cuda"
157
+ if use_cuda:
158
+ dtype = torch.cuda.LongTensor
159
+ else: